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Abstract
Sign language is a non-verbal communication tool used by the deaf. A robust sign language recognition framework is needed 
to develop Human–Robot Interaction (HRI) platforms that are able to interact with humans via sign language. Iranian sign 
language (ISL) is composed of both static postures and dynamic gestures of the hand and fingers. In this paper, we present 
a robust framework using a Deep Neural Network (DNN) to recognize dynamic ISL gestures captured by motion capture 
gloves in Real-Time. To this end, first, a dataset of fifteen ISL classes was collected in time series; then, this dataset was 
virtually augmented and pre-processed using the “state-image” method to produce a unique collection of images, each 
image corresponding to a specific set of sequential data representing a class. Next, by implementing a continuous Genetic 
algorithm, an optimal deep neural network with the minimum number of weights (trainable parameters) and the maximum 
overall accuracy was found. Finally, the dataset was fed to the DNN to train the model. The results showed that the optimi-
zation process was successful at finding a DNN structure highly suitable for this application, with 99.7% accuracy on the 
verification (test) data. Then, after implementing the module in a robotic architecture, an HRI experiment was conducted to 
assess the system’s performance in real-time applications. Preliminary statistical analysis on the standard UTAUT model 
for eight participants showed that the system can recognize ISL signs quickly and accurately during human–robot interac-
tion. The proposed methodology can be used for other sign languages as no specific characteristics of ISL were used in the 
preprocessing or training stage.

Keywords  Deep Neural Network · Pattern recognition · Sign language recognition · Human–Robot interaction · Machine 
Learning · Children with a hearing problem

1  Introduction

Sign Language (SL) is a visual language and a non-verbal 
communication tool that is used by individuals with hear-
ing problems to communicate with other people. According 
to statistics published by the World Health Organization 

(WHO), 450 million people worldwide are seriously hard-
of-hearing, and 30 million of these are children [1].

Studies show that a lack of attention to teaching SL to 
deaf children affects not only their language development, 
but also disrupts their mental functioning [2, 3]. These stud-
ies considered SL as a structured language necessary for the 
cognitive and mental development of children with hearing 
problems.

Despite the important role of sign language in deaf peo-
ple’s lives, this language, especially Iranian Sign Language 
(ISL), is not well known to the general public, and individu-
als with hearing impairments face serious problems in com-
municating with others. Therefore, there is a serious need 
in society to familiarize both deaf and typically developing 
people with this necessary communication tool.

In juxtaposition, due to the rapid growth in technology, 
the use of social robots in the education and clinical treat-
ment of children has been attracting wide attention in recent 
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years. Implementing and empowering social robots in sign 
language education is an example of such studies [4]. Spe-
cifically, a social robot named “RASA” (Fig. 1) has been 
designed and developed in the Social and Cognitive Robot-
ics Lab., Sharif University of Technology, Iran, to facilitate 
teaching ISL to deaf and hard of hearing children. Having 
thirteen Degrees of Freedom (DoF) in each arm, includ-
ing seven DoF in its active fingers, enables RASA to per-
form different signs and interact with users with hearing 
problems via ISL [5]. (Some information about the RASA 
robot: Weight: 36 kg, Height: 119 cm, CPU: mini-PC intel 
NUC and Arduino, Operating System: Windows 7 and Robot 
Operating System (ROS), Total DoF: 32). As RASA is able 
to open and/or close each finger independently, it can per-
form a large number of ISL classes. In addition, the DoFs in 
arms and elbows allow RASA to reach an adequate work-
space for representation of most of the ISL signs. However, 
the robot is limited in its ability to display all existing hand-
shapes since some ISL signs require complex finger patterns 
(for example, laying one finger over another), which are not 
possible for RASA to perform.

The first requirement for a robot, like RASA, to play an 
effective role in sign language education is to recognize the 
different signs of SL performed by users with acceptable 
accuracy in real-time and in varying conditions. The robotic-
based recognition mechanism should be robust enough in 
various operating conditions, such as different environments 
and different users (with differing physical properties and/or 
performances when using SL words), to show an appropri-
ate recognition rate as well as reproduce/perform various 
signs [6].

Sign language movements generally consist of two parts: 
1) dynamic gestures, which include the movement of hands 
and arms in 3D space, and 2) static postures of hands/fingers 
during the run of sign language. As the posture of the hand 
and fingers may alter significantly during the performance, 
as shown in Fig. 2, simultaneous pattern recognition of both 

these parts by robotic systems is a challenge. Iranian sign 
language (ISL) is a complete language that employs signs 
made with the hands and other gestures, including facial 
expressions and body postures. There are other factors that 
play important roles in demonstrating the purport of the ges-
tures as well. These factors include the face, eyes, head, and 
body. ISL is made up of several main elements including 
(1) the state of the hand, (2) movement of the hand/arm, (3) 
the place that hands/arms settle on it, and 4) the direction 
of the palms of the hands [7, 8]. During the performance of 
any ISL signs, all the spatial parameters of the arm and the 
fingers may alter (e.g., a dynamic movement with fingers in 
a specific arrangement in any of the above steps); hence, the 
tool used to capture ISL data should be able to simultane-
ously capture the geometry of the hand and all of the fingers.

Different tools such as RGB cameras [9, 10], Data Captur-
ing Suite/Gloves [11–13], Microsoft Kinect sensor [14–16], 
ToF1 cameras [17, 18], Leap Motion sensor [19–21], and 
combinations of these tools [22] have been used to capture 
SL signs data in previous researches. Among these, Data 
Capturing Gloves have shown the highest accuracy in sign 
recognition; however, their cost and user discomfort may 
be considered as disadvantages [23]. In the following, some 
mechanisms for data capturing and autonomous movement 
pattern recognition algorithms are presented.

Regarding recognition algorithms, various kinds of 
Neural Networks [7, 8, 10, 24, 25], classic classification 

Fig. 1   RASA robot performing an ISL sign

Fig. 2   A Schematic of 3 ISL signs. All spatial parameters of the hand 
and the fingers vary during the signs

1  Time-of-Flight.
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methods such as Nearest Neighbor [26, 27], Support Vector 
Machine (SVM) [28, 29], Hidden Markov Models (HMM) 
[24, 28], and combinations of these algorithms [30, 31] have 
been used in related works. One neural network, which has 
recently become very popular in the field of pattern recogni-
tion, is the Deep Neural Network (DNN) [32]. This network 
consists of more than two layers that are utilized for complex 
non-linear mapping and mathematical modeling between the 
input and output [33]. Despite the complexity of the rela-
tionship between the input and output, DNN can act as a 
powerful tool for classification; and with the proper selection 
of network structures and enough input data, it shows very 
high accuracy in classification and pattern recognition [34].

In 2019, a framework for continuous sign language rec-
ognition using the DNN algorithm was presented by Cui 
et al. [35]. In their study, the system captured a video of 
RGB frames and optical flows of SL signs as the input and 
produced a sequence of detected words as the output. Before 
this, the HMM algorithm, which has a limited capacity to 
record temporal data, was often used for autonomous and 
continuous recognition of SL words/signs in related stud-
ies. Conversely, the authors of [34] proposed an algorithm 
that uses DNN with temporal fusion layers as the sequence 
learning module. One of the challenges they tried to over-
come was how to achieve acceptable accuracy in detecting 
the SL words/signs with a small dataset (less than typically 
required) for this methodology.

In 2018, Taskiran et  al. [36] developed a system for 
recognizing American Sign Language (ASL) in real-time 
that uses (1) a DNN for feature extractions and classifica-
tion, and (2) a Convex Hull algorithm for detecting arm/
hand positions. In their study, the arm/hand positions are 
first extracted and then sent to the DNN for classification. 
The hand movements in [36] were not dynamic, and only 
the initial and final positions of the hands and fingers were 
used to specify the words’/signs’ classes. It should be noted 
that their results are not applicable to ISL signs because the 
dynamics of the movement (not necessarily the initial/final 
hands’ postures) very often represent the sign/word in ISL. 
A similar methodology was presented by Tang et al. [37]. 
In their research, an algorithm for detecting hands (captured 
by a Kinect sensor) was implemented, and then a DNN was 
used to extract the features of the hands’ static postures for 
a number of SL words. In [38], the authors implemented an 
algorithm similar to that presented in [37] on a larger dataset 
of ASL signs and observed an accuracy of 92.8% in sign 
recognition. The authors of [39] deployed an ISL recognition 
vision-based system that works with 20 classes of dynamic 
signs. Using the HMM method, they reached a mean accu-
racy of 97.48% on the dataset gathered using videoframes. 
In addition to image-based methods, in which the inputs are 
captured by cameras/Kinect, the authors in [40] also used 
EMG sensors to first collect the input data and then apply 

a DNN. To be able to feed the data to the CNN layers, the 
authors implemented a sliding-window mechanism to seg-
ment the pre-processed data. They reported an accuracy of 
83% for recognition of sign language postures. Their sugges-
tion that future works find a way to optimize the DNN struc-
ture contributed to the formulation of our study. The authors 
of [41] proposed a method using modified KNN to classify 
40 dynamic Arabic sign language words gathered by DG5-
VHand sensor gloves, reaching an accuracy of 98.9%. The 
preprocessing stage in this work strongly emphasizes the 
temporal dependence of the data. Also, using a leap-motion 
sensor, the authors of [20] proposed an SVM + KNN meth-
odology, which reached an accuracy of 79.83% on detecting 
26 classes of static ASL signs.

In 2018 and 2019, Dong proposed an algorithm to rec-
ognize aircraft icing and faults in sensors/actuators of an 
airplane in real-time using DNN [42, 43]. The novelty of 
this work was that the airplane data of the time-series was 
coded as pixels of a picture, which were then used as the 
inputs for their DNN. The authors called this technique the 
“state-image” method for the preprocessing of the data. 
Using this application, they reached higher accuracy in the 
recognition process compared to other related algorithms in 
the literature.

In this paper, as a practical application of machine learn-
ing algorithms for social Human–Robot Interaction (HRI) 
to empower our social robotic platform to interact via ISL, 
a framework which uses Data Gloves for capturing sequen-
tial data as time-series to recognize Iranian Sign Language 
words/signs is proposed. Our goal is to classify the data from 
different sensors over time; therefore, we are dealing with 
multi-dimensional sequential data. As we were not able to 
generate a large database of dynamic ISL signs due to the 
lack of enough participants, shortage of resources, and the 
impossibility of using virtual simulation in this application, 
we aimed to build a platform that does not require a large 
amount of data to classify ISL signs/words. Thus, without 
the need to apply Recurrent Neural Networks (RNN) and/
or complex feature extraction algorithms from time-series, 
this study contributes to the existing literature by developing 
a platform able to robustly recognize the ISL words/signs 
using (1) the state-image preprocessing technique to convert 
the sensory data to intensity images that actually transform 
the dynamic nature of the patterns to a static one (as the 
first paper’s contribution), and more importantly (2) a deep 
neural network whose optimized structure was determined 
via a genetic algorithm optimization process (as the second 
and main contribution of the study). The implemented meth-
odology for data pre-processing significantly transforms the 
dynamic nature of gesture recognition into a static image 
processing problem that can easily and accurately be solved 
by DNNs. This study differs from previous research in the 
simultaneous usage of the state-image method (as a new 
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approach for analyzing time-series data in this application) 
and an optimization algorithm to determine the optimized 
structure of the DNN, which makes the network more accu-
rate, and at the same time, less heavy. The main objective 
of this study is to build a sign recognition framework that 
satisfies the need for an acceptable (in terms of robustness, 
accuracy, and speed) pattern recognition module in order 
for RASA to interact with human users using sign language 
and to build a connection between machine learning, social 
robotics, and human–robot interaction to satisfy the need of 
an ISL teaching robot.

Due to the non-availability of a standard dataset for ISL 
words, we first gathered a dataset of fifteen ISL classes, then 
augmented the data virtually by preprocessing it through 
the state-image method. Next, the optimized structure of 
the deep neural network (including the number of Convolu-
tion filters and the Convolution kernel size) used to train 
the generated images was determined by applying a genetic 
algorithm. After the training process, the performance of 
the optimized DNN structure was investigated with a test set 
not seen by the network during the training process. Also, 
other techniques of this methodology allow the system to act 
robustly in different user/environmental conditions. Then, 
we investigated whether the proposed algorithm performs 
better than similar algorithms from related works in auto-
matic sign language recognition. Finally, we assessed the 
system’s performance in real-time applications through 
a statistical analysis conducted on data from the standard 
UTAUT model collected during HRI sessions.

2 � Database Collection

2.1 � Setup and Conditions

The data collection process was done in conditions that 
would allow the system to work robustly against the user’s 
anthropometric characteristics, the geometrical direction of 
the user in 3D space, and as far as possible, the speed and 
the start/finish position of the movement. Other techniques 
were also used in the pre-processing stage (details to follow 
in Sect. 3) to make the system robust against initial sensor 
bias and establish the global geometric position of the user’s 
body and hands in space. In this way, the system will only 
be sensitive to the pattern of the hand gesture and relative 
position of the hand to the previous time frames.

Most of the signs in ISL are performed by the right hand. 
The movement patterns of the fingers, palm, and forearm 
(in most cases) determine the sign (i.e., alphabet letters or 
words) performed by the user. The fingers do not necessarily 
follow the same pattern during the performance of an ISL 
sign; thus, we cannot use a single sensor for all the fingers. 
Thus, the structure of the selected ISL patterns needs to be 

collected and processed so that the number of parameters 
describing the gesture is not more than needed (to avoid 
over-fitting) but is also large enough to be able to describe 
the gesture (to avoid under-fitting). In this paper, the XYZ 
position of 5 fingertip sensors, palm sensor, forearm sen-
sor, and also the 3 angular directions of the palm sensor 
were chosen to describe the ISL gestures (Fig. 3). Thus, a 
total of 24 parameters were chosen to describe the motion 
patterns, which means each specific ISL class is described 
by a specific set of 24 time series. Each sensor’s output is a 
time series, and all these time series together correspond to 
a specific sign. As the readers see in the next sections, these 
sets of time series will be coded as the pixels of an image 
and eventually compose images 24 pixels in width.

The data transfer rate from the motion capture gloves 
to the processing unit is almost 60 Hz (with a standard 
deviation of 2 Hz). The process of data acquisition is done 
in three different body directions in both the standing and 
sitting positions, as shown in Fig. 4. Fifteen classes of data 
were collected at different random speeds and different 
start/finish hand positions for each class. The signs were 
performed by five users with significant physical differ-
ences and a minimum and basic knowledge of ISL. To 
be more specific, for each class, we asked each partici-
pant to perform twice in each direction (inclined to the 
right, forward, and inclined to the left), which gave us 6 
cases and an additional 2 cases with random direction and 
speed. They did not know the selected 15 signs prior to 

Fig. 3   Glove sensor used in the data collecting process. Five fingertip 
sensors, a palm sensor, and a forearm sensor are used to describe pat-
terns. IMU sensors are used in this glove
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participating in data collection experiments. An ISL expert 
performed each sign for each participant in person, and the 
participants were then asked to repeat the performed sign. 
The dataset is both user-and environment-independent, as 
the numerical sensor values are normalized in the pre-
processing section. It is important to mention that each 
sign was completed during a different time period. This 
occurrence happened naturally because different users 
in different conditions do not necessarily perform signs 
at the same speed. Thus, finding a criterion to compare 
these performed signs regardless of the user’s performance 
speed is an important issue that needs to be addressed in 
the pre-processing section. The dataset is perfectly bal-
anced, as the amount of data in each class is identical.

2.2 � Data Visualization

Iranian sign language is a collection of gesture patterns of 
the fingers, hand, and forearm. For example, the three top 
diagrams in Fig. 5 represent the palm position of a specific 
sign, performed by different users. As seen, the position of 
just the arm is quite different from person to person. Thus, 
the pre-processing method and the mechanism of the detec-
tion system must be chosen so that the system will be fast 
enough to detect and classify signs in a minimum amount 
of time, and also complicated enough to analyze a huge set 
of time series together to extract features that distinguish 
different classes. Figure 6 illustrates the position of the palm 
in three Decatriene planes for a single specific ISL sign per-
formed 10 times by different users. Although the trajectories 
in each image almost lie in a limited region, different anthro-
pometric characteristics, different speeds of performance, 
and different geometrical directions in 3D space can lead to 
totally different variations in this figure. Considering all the 
issues mentioned above, we hypothesize that coding these 
time series into pixels and composing pictures for each class 
using the “State-Image” pre-processing method can lead to 
fast and accurate results. This hypothesis is evaluated in the 
next sections.

2.3 � The ISL Dataset

In this study, 15 ISL signs were chosen to be studied, and 
40 sets of time series were collected for each to make a 
database of 600 time-series, each with a specific label. 
Then, the dataset was virtually augmented to make a data-
base of 30,000 data (see Sect. 3.1), and all of these data 
were turned into images using the State-Image approach. 
Thus, the final dataset was composed of almost 30,000 
images, each representing a specific sign of ISL. To cor-
rectly train and evaluate the model, it was necessary to 
segment our dataset into three parts: Training data, Vali-
dation data, and Verification (test) data [44]. In this work, 
60% of the total datasets were used for training, 20% for 
evaluation, and the remaining 20% for testing. The process 
was done by the standard Sklearn model selection library 
of python (https://​scikit-​learn.​org/​stable/​model_​selec​
tion.​html), which uses a train-test split protocol to shuffle 
and randomly select the data for each group. It should be 
noted that we segmented the dataset at the beginning of the 
entire project, meaning that the test (verification) dataset 
was not used to train any network, not in the optimization 
process nor the optimal DNN. It was only used to assess 
the accuracy of networks on an unseen dataset; namely, 
the models first predicted the labels of these data, and we 
then compared it to their original label to calculate the 
verification accuracy for the fitness function. A summary 
of the properties of this section can be seen in Table 1.

3 � Data Pre‑Processing

3.1 � Data Augmentation

DNNs need a large amount of data to be trained effectively, 
so only using the small amount of the data collected from the 
motion capture glove will not lead to promising accuracy in 
pattern recognition. Therefore, it is necessary to somehow 
virtually create more data out of the in-hand data with the 
same label without actually using an experimental setup. 
This technique is called data augmentation, and it is widely 
used in data processing. In the field of image processing, 
data augmentation techniques included rotation, changing 
brightness, adding noise, mirroring, cropping, etc. [45].

In this paper, three techniques were used for data aug-
mentation: (1) Adding time delay (stagnation frames) to the 
start/end of each set of time series, (2) Cropping a part of 
the start/end of each set of the time series, and (3) Add-
ing random Gaussian noise to a randomly chosen collection 
of datasets. In addition to enlarging the size of the in-hand 
ISL dataset and affecting the training process positively, the 
methodology is beneficial in other aspects such as:

Fig. 4   A schematic of the data collection setup

https://scikit-learn.org/stable/model_selection.html
https://scikit-learn.org/stable/model_selection.html


	 International Journal of Social Robotics

1 3

1. 	 Adding stagnation frames to the start/end of each set 
of the time series increases the robustness in the start/
finish detection mechanism against faults. This means 
that if for any reason the user performs the sign with 
a time delay at the beginning (start stagnation), or the 
end of the performance is detected later than it should 
be (end stagnation), or in general, the duration of the 
performance is not detected correctly, the system can 
act more robustly. The stagnation length is up to 20% of 
the performance length, with a step of 5% added to the 
beginning and/or the end of the time series.

2.	  Cropping a different number of frames at the beginning/
end of the time series can increase robustness in cases 
where the start/end detection mechanism detects the 
beginning later, or the end sooner than it should. It also 
increases the robustness in cases where the hand posi-
tion at the beginning/end of the performance is not iden-
tical for different users. The cropping length is up to 10% 
of the performance length, with a step of 5% applied to 
the beginning and/or the end of the time series.

Fig. 5   An example of different palm trajectories made by different users for the same sign
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	   Therefore, according to 1 and 2, each data becomes 49 
data in total, and after we add another randomly cropped 
time series, it becomes 50 data out of one.

3.	 Adding random Gaussian noise can make the system 
more robust against sensor faults, environmental noise, 
motion vibrations, etc. Gaussian noise is a commonly 
observed noise in digital images that is usually caused 
by sensor faults and poor lighting [46]; thus, it is natural 
to choose this kind of noise as a data augmentation tool 
in our application. We applied white Gaussian noise to 
20% of the data in each class, with a random signal-to-
noise ratio per sample of 35–40 dB.

In summary, it is possible to increase the quality of the 
training model and robustness of the model in pattern recog-
nition and gesture classification by implementing the men-
tioned data augmentation methodology.

3.2 � State‑Image Pre‑Processing

The State-Image Method is a novel pre-processing technique 
that codes every state of the system into pixels of an image. 
It is used to transform a set of time series into a single image, 
both corresponding to the same class. In this paper, this tech-
nique is implemented in the following steps:

1.	  Each set of time series is compressed or stretched into 
a specific pre-defined number of frames, regardless of 
the duration of the performed sign. Each set is framed 
into 60 frames using linearly spaced elements. By doing 

this, the effect of time period differences in different 
performances is omitted, leading to an increase in the 
robustness of the system. Almost all of the SL signs 
were performed in 150–180 frames, with an average of 
about 160 frames. Since the data transfer rate is unneces-
sarily large for our application (i.e. collecting data every 
16 ms), we applied down-sampling at the preprocess-
ing stage for a few purposes: (1) To keep the dataset 
easier to store, manage, and process, it is better to omit 
redundancies in the dataset, and (2) large values of data 
frames cause significantly large asymmetry in the shape 
of images produced by the state image method (24 pixels 
in height, and large values for width). Feeding this kind 
of data to DNNs is uncommon.

2.	  Each number in a time series is coded as intensity 
pixels, ranging from 0 to 255; to do this, in each time 
series the minimum sensor value is chosen to be 0 and 
the maximum is chosen to be 255, and every value in 
between is calculated linearly to have a value in the 
range of 0 to 255. In other words, for each sensor, we 
have 60 pixels with a value of brightness between 0 
and 255. Therefore, as all these images are one pixel in 
depth, each time series is coded to an intensity image.

3.	 The whole image corresponding to a set of time series is 
made by setting these pixels in a row together, each rep-
resenting the value of a sensor over time. As we chose 
24 parameters to describe the gestures, the images will 
be 24 pixels in width and 60 pixels in length. Therefore, 
each set of time series (one sign of ISL) is represented 
by a 24*60 image. Figure 7 illustrates the proposed 

Fig. 6   The position of the palm in 3 Decatriene planes for a single ISL sign performed 10 times by different users

Table 1   A Summary of the 
Properties of the Collected 
Dataset

Number of the classes 15 Number of the training data 18000
Number of data collected for each class 40 Number of the validation data 6000
The dataset size after augmentation 30,000 Number of the verification data 6000
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methodology and Fig. 8 depicts an example of the data 
augmentation process results.

 
The proposed approach is remarkably beneficial for data 

pre-processing in these aspects:

1.	 The dynamic nature of the hand gesture detection 
becomes static; and thus, much easier to process and 
recognize without needing to use complex recurrent 
networks, and avoiding high computational costs and 
the need for a larger amount of the data. More precisely, 

each ISL sign is characterized by a dynamic hand ges-
ture over time. This means each sensor’s output is a time 
series, and all these time series together correspond to 
that sign. The output of the model is not only a func-
tion of the current hand and figure positions but is also 
affected by previous positions. Therefore, the nature of 
the classification problem is dynamic and needs to be 
handled by RNNs, like LSTM, which are usually heavy 
(need more memory and processing power) and need a 
lot of data to be trained (especially in this case where 
we have 24 parameters, not just one); but, by using 
the proposed method all of the time series are coded 

Fig. 7   The diagram of four different dynamic ISL hand gestures 
turned into images with the State-Image approach. Each image rep-
resents a specific sign (ISL class) performed by the user, which is 24 

pixels in width (corresponding to 24 states of the system) and 60 pix-
els in length (corresponding to 60 time frames)

Fig. 8   The illustration of the results of the implemented data augmentation technique. All four images correspond to the same class and all have 
the same label. The top left shows the original image, and the other three show augmented copies of it
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together into a static image that represents the 24 time 
series together. Hence, a good DNN is enough to build 
an accurate recognition system and there will be no 
need to gather a large amount of data or deal with much 
heavier networks and computational costs.

2.	  DNNs are remarkably powerful tools for image classi-
fication and have mostly been developed in this regard. 
When a hand gesture pattern recognition problem is 
transformed into an image classification problem using 
DNNs, we can expect higher classification accuracy in 
comparison to classic methods like SVM or HMM.

3. 	 Coding each time series into intensity values makes 
the system insensitive to the pure values of the sensor 
positions, and it is only the trend of movement, or in 
better words, the gesture pattern under the scope of the 
model to extract useful features. That means that it is 
not important in which spatial position the movement 
has begun or finished for our model, but rather what 
the current state of the user’s hand and fingers’ position 
are relative to the prior states. In this way, the model 
acts more robustly against totally different performances 
caused by different users and different environments.

4.	  The effect of different performance time durations was 
omitted due to the equality of the frame numbers in the 
final processed images.

In summary, by implementing the technique of “State-
Image” in the data pre-processing stage, a dataset is built 
that enables the model to be trained with a lower amount of 
data and computational cost and to potentially more accu-
rately and robustly classify dynamic hand gestures.

We should note that the proposed methodology can 
be used for other sign languages as well since no specific 
characteristics of ISL were used in the preprocessing stage. 
When these signs are represented as intensity images, they 
can be classified using DNNs; therefore, we can claim that 
the proposed method can also be used to recognize other 
sign languages.

4 � Deep Neural Network (DNN)

In this section, we go through the building and proper train-
ing of our DNN model. The deep neural network used in 
this paper is implemented by the Keras library [47] with a 
TensorFlow backend in python 3 environments.

4.1 � Building Layers

The input of the DNN is a set of images with dimensions of 
24*60*1 (24 pixels in width, 60 pixels in length, and 1 pixel 
in depth, which is the value of the intensity).

The first layer is set to be a 2D Convolution layer in which 
the depth (filter number) and the kernel size are not known 
and are found through the optimization process. The stride 
is set to 1 due to the small size of the images and to avoid 
any probable information loss. Then, a 3 × 5 Maxpooling 
layer is set to reduce the size of the total net. Similar to the 
first layer, another Convolution layer is set with an unknown 
filter number, kernel size, and a stride number equal to 1, fol-
lowed by another 3 × 5 Maxpooling layer. It should be noted 
that we chose a 3 × 5 size for the pooling layers as every 3 
rows of each image belongs to a single sensor, and the width 
of the images is considerably higher than their height, so a 
common size of 2 × 2 will not be useful. After that, a Flat-
ten layer is set to flatten the output of the previous layers, 
and finally, a Dense (fully-connected) layer with an output 
dimension equal to the total class number, which is 15. In the 
Convolution layers, Relu was chosen as the activation neu-
ron function. Softmax was chosen as the activation neuron 
function in the Dense layer (i.e., the last layer). Therefore, 
the output of the DNN is an array of 15 elements with values 
between 0 and 1, which actually represent the class number 
of the given data, (i.e., the ISL sign in our case).

One of the most common problems with artificial neural 
networks is Over-fitting, which means the network is some-
how “memorizing” the data (and not “learning” it). This 
leads to remarkable prediction error rates when dealing with 
new data that has not been seen during the training. Several 
techniques can be used to avoid this problem, including the 
Dropout technique [48]. In this technique, some of the neu-
rons disappear in the total net during each training epoch and 
the training process continues without them. These neurons 
return to the total net with their old weights in the next steps, 
and this cycle continues to the end of the training process. 
This method has been shown to have promising results in 
avoiding the Over-fitting problem [44]. In this work, a Drop-
out with a rate of 0.2 was added to the network to avoid 
Over-fitting.

4.2 � Training The Network

There are several conventional methods for training the 
DNNs and adjusting its neurons' weights. Two of the most 
common learning methods are ADAM2 and SGD3 [49]. 
ADAM is usually faster than SGD and it is more robust 
against noisy and imbalanced data, but in some cases, like 
when the size of the dataset is not big enough, this can lead 
to divergence and the training process cannot be completed 
[50]. In our optimization approach, the networks that are not 

2  Adaptive Moment Estimation.
3  Stochastic Gradient Descent.



	 International Journal of Social Robotics

1 3

compatible with the ADAM default learning rate (which is 
0.001) are omitted automatically.

Since our dataset is perfectly balanced, the loss function 
(or objective function, or optimization score function) is set 
to be Categorial Cross-Entropy [51], which means if M is the 
total class number, yo,c is a binary indicator (0 or 1) showing 
whether class label c is the correct classification for observa-
tion o, and po,c is the predicted probability observation o of 
class c, The loss is calculated as (1):

Several criteria can be implemented to stop the training 
process, like defining a maximum number of epochs, a spe-
cific training or validation accuracy, etc. As was mentioned 
in Sect. 4.1, over-training the data can lead to the Over-
fitting of the net; and thus, large error rates in test data clas-
sification. Over-fitting begins when the validation accuracy 
starts to fall while the training accuracy is still ascending, 
and hence, the training process should be terminated. In this 
paper, the trend of the validation accuracy was observed dur-
ing the last 15 epochs of the training, and when it ceased to 
ascend the process stopped. This step was implemented as a 
Keras callback function called “Early Stopping”. This tech-
nique, in addition to the Dropout technique, helped us avoid 
the Over-fitting problem and led to a more reliable model.

5 � Optimizing dnn’s structure using genetic 
algorithm

The Genetic Algorithm (GA) is a metaheuristic optimiza-
tion algorithm developed by Goldberg in 1989. It is inspired 
by Natural Selection, which is the differential survival and 
reproduction of individuals due to differences in phenotype. 
The Genetic algorithm is commonly used to generate high-
quality solutions for multi-variable complex optimization 
and search problems by relying on bio-inspired operators 
such as mutation, crossover, and selection [52]. GA is often 
used for static optimization problems where the cost func-
tion does not change with time, and it has been shown to be 
a fast and powerful tool in dealing with real-world problems 
where the cost function is dependent on many variables, 
especially ones related to nature.

Deep Neural Networks are also inspired by the mecha-
nism of the human mind for processing and data percep-
tion. As there is no explicit mathematical relationship 
between the structure of the DNN and the final test accu-
racy, so metaheuristic algorithms should be used to opti-
mize the network. Due to the complex, static, and nature-
inspired essence of the defined optimization problem, this 
paper contributes the Continuous Genetic algorithm as a 

(1)Loss = −

M
∑

c=1

yo,c log(Po,c)

good choice to find the optimum layer structure of the 
model as defined in the previous section.

The characteristics of the continuous GA used in this 
paper are explained in detail in the next section.

5.1 � Fitness Function

As previously mentioned, the dataset is segmented into 
three parts: training data, validation data, and verification 
(test) data. The final reported accuracy of the neural nets 
is conducted on the verification data that were not seen 
during the training and validation processes; therefore, 
one of the criteria is to compare the different networks. 
The main goals of the validation data are to (1) estab-
lish the point at which the training should be stopped (see 
Sect. 4.2), and (2) find the optimum neural network struc-
ture. In this paper, an optimal DNN is defined as a DNN 
that produces the highest overall accuracy with minimum 
trainable parameters. The overall accuracy is defined as 
the weighted average accuracy on the training, validation, 
and verification data. In other words, if acctrn is the maxi-
mum training accuracy and accvld is the maximum valida-
tion accuracy over all of the epochs, accvrf  is the accuracy 
over the verification data and p is the number of trainable 
parameters, then fitness function f of each DNN is defined 
as follows:

We sought to maximize this fitness function. The equa-
tion takes all the accuracies into account with different 
weights, with the test accuracy having the maximum 
weight. We segmented the dataset at the beginning of the 
entire project, meaning that the test (verification) dataset 
was not used to train any network, not in the optimization 
process nor the optimal DNN. It was only used to assess 
the accuracy of networks on an unseen dataset; namely, the 
models predicted the labels of these data, and we compared 
it to their original label to calculate the verification accu-
racy for the fitness function. Since DNNs usually reach 
high accuracies, it is important to take into account small 
differences in the overall accuracy. As seen in the equation 
above, a 0.1 percent increase in the overall accuracy is 
multiplied by 1000, leading to a 100 point increase in the 
fitness function. On the other hand, a 100,000 increase in 
the number of trainable parameters decreases the fitness 
function by 100 points. Therefore, at the end of the optimi-
zation process, only networks with the highest accuracies 
and lowest trainable parameters remained, meaning the 
networks are accurate, light (need less memory), and fast 
(need less time to adjust the weights).

(2)f =
acctrn + 2 × accvld + 3 × accvrf

6
× 1000 +

106 − p

1000
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5.2 � Optimization Parameters

The optimization problem in this paper is to find the opti-
mal hyper (structural) parameters of the DNN that lead to 
the best-trained network. Four hyperparameters of the DNN 
were chosen as the variables that need to be found during 
the optimization process: the filter number of the first and 
second Convolution layer, and the kernel size of the first 
and second Convolution layer. The filter number was set to 
change between 10 and 150, and the kernel size was set to 
change between 1 and 10.

In order to obtain the results in a reasonable time, we 
fixed the maximum iterations (generations) in the GA opti-
mization process. This number was chosen empirically to be 
25. This means that after 25 iterations (generations), the best 
chromosome is defined as the optimum set of parameters 
that determine the optimal DNN for our application. There-
fore, the stopping criterion for the optimization is reaching 
the maximum iteration (generation) number. A summary 
of the specifications of the implemented Genetic algorithm 
can be seen in Table 2. We have to note that 16 DNN’s 
are trained in each generation of the optimization process 
(except for the first generation where 32 DNN’s are trained), 
meaning that the algorithm needs to train 432 DNN’s in 
total. Training each neural network is a time-consuming and 
costly procedure, and because of this, the optimization algo-
rithm requires fast operating GPUs and a great deal of time. 
Adding another optimization parameter creates the need to 
expand the generations and/or population of each generation, 
requiring even more time and cost. The parameters related 
to the conv. layers gave us the needed degree of freedom to 
alter the characteristics of the neural networks in a signifi-
cant manner and deal with the deciding factors of the model.

6 � Results and Discussion

The optimization process was run on the online GPU pro-
vided by google Colab. The optimal answer obtained from 
this process is an array of (89, 89, 4, 1), which is the best 
chromosome at the end of the 25th generation. It is interest-
ing to note that the filter number of the two convolution 
layers is the same, which is in line with commonly used 

networks such as VGG-Net. Hence, according to the GA 
results, we chose the filter number of 89 for the first and sec-
ond Convolution layer and a kernel size of 4 for the first lay-
ers, and 1 for the second layer. Figure 9 presents the diagram 
of the mean fitness of the process across all generations. 
The mean fitness is the average fitness of all chromosomes 
in every iteration.

From Fig. 9, we can see that from the 5th iteration, the 
average fitness of the chromosomes has a higher value rela-
tive to the first few epochs; this means that the optimization 
process is actually keeping only the chromosomes that have 
the higher fitness. The mutation effect can be seen in the ini-
tial epochs, and it peaks in the 3rd iteration where the mean 
fitness of that generation is considerably lower than the other 
generations. The clear effect of the optimization is seen in 
Fig. 10, where the best chromosome in each generation is 
getting better over the generations or stays the same. There 
is a sharp improvement in the fitness of the best chromo-
some in the first 5 iterations, and then it remains even until 
it is followed by another improvement in the last iterations. 
The optimization process has been shown to be effective in 
finding the networks that have higher accuracies and fewer 
parameters. The fitness of the best DNN structure in the last 

Table 2   An Overview of 
the Specifications of the 
Implemented GA

Selection Initial population size Number of genes in 
each chromosome

Fitness function

Modified Rank Weighted 
Random Pairing

32 4 Eq. 2

Stopping Criteria Number of mutated genes in 
each generation

Reproduction Continues/Discrete

Maximum generation 
number = 25

6 Extrapolation with 
Crossover

Continues

Fig. 9   The diagram of mean fitness over the optimization iterations. 
Each value indicates the average fitness value of all the chromosomes 
in an iteration
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generation is considerably higher than the initial proposed 
DNN structure.

The final DNN used for the dynamic ISL classification 
was built using the optimal parameters. This model had 
21,553 parameters (weights). For the optimal model used 
for our application, we still used 20% of the data for verifi-
cation, but only 72% for training and 8% for validation (we 
used the most data for the training stage). In this way, the 
number of the training data (which is 21,600) will be more 
than the model trainable parameters, which will reduce the 
occurrence of over-fitting. The properties of the final optimal 
DNN that was built and reported are presented in Table 3. 
The mean accuracy over the verification (test) data, not used 
in any stage of the training, is 99.7%. This is remarkably 
satisfying for our application. Although we had other DNNs 
that had fewer trainable parameters (fewer than 21,553) dur-
ing the optimization process, these networks were not the 
optimal answer to our optimization problem since they end 

up with smaller overall accuracy. Thus, the optimal answer 
is the best trade-off between the fewest parameters and the 
highest overall accuracy (defined by Eq. 2). Please note that 
since half of the population is eliminated in the first iteration 
of the optimization process, the remaining networks in later 
generations always have acceptable accuracy.

These results show that the optimization process was 
quite successful at finding the network, which is absolutely 
appropriate for our application. Since it is remarkably accu-
rate and also very light to work with, the RASA robot does 
not need to dedicate a large amount of memory and process 
to detect the ISL signs in real-time and is able to recognize 
the signs with an accuracy of more than 99%. Figure 11 
shows the trend of the training and validation accuracy 
throughout the training in this model. The training process 
was terminated by the Early-Stopping mechanism at the 
42nd epoch.

By looking at Fig. 11, we observe that the validation accu-
racy is always higher than the training accuracy; this might 
suggest that the validation set consists of easier samples than 
the training set or the model is overfitted. To assess this, we 
also trained the final model with a fivefold cross validation 
method, meaning that we shuffled the dataset and segmented 
it into 5 equally sized parts. Then, in each iteration, we held 
one part out for validation, and left the other parts for train-
ing the model, and repeated this process 5 times. The results 
are as follows: Iteration 1, training accuracy: 98.0%, valida-
tion accuracy: 99.1%-Iteration 2, training accuracy: 98.3%, 
validation accuracy: 99.7%-Iteration 3, training accuracy: 
98.0%, validation accuracy: 99.6%-Iteration 4, training accu-
racy: 98.0%, validation accuracy: 99.4%-Iteration 5, training 
accuracy: 97.1%, validation accuracy: 98.9%. The average 
training accuracy over all folds is 97.9%, and the average 
validation accuracy over all folds is 99.3%. Therefore, the 
same pattern is observed in the cross-validation method, 

Fig. 10   The diagram of maximum fitness over the optimization itera-
tions. Each value indicates the maximum fitness value of all the chro-
mosomes in an iteration, which is equal to the fitness of the best chro-
mosome of each generation

Table 3   The structure of the optimal DNN

Layer (type) Output Shape Param #

conv2d_l (Conv2D) (21, 57, 89) 1513
max_pooling2d_l (MaxPooling2) (7, 12, 89) 0
conv2d_2 (Conv2D) (7, 12, 89) 8010
max_pooling2d_l (MaxPooling2) (3,3,89) 0
dropout_l (Dropout) (3,3,89) 0
flatten_l (Flatten) (801) 0
dense_l (Dense) (15) 12,030
Total params: 21,553
Trainable params: 21,553
Non-trainable params: 0

Fig. 11   The diagram of the training and validation accuracy of the 
optimal DNN over the training epochs
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where the validation accuracy is higher than the training 
accuracy in all iterations, even though the training and the 
validation sets are different in each iteration. These results 
suggest that the premise of having unbalanced sets or over-
fitting is rejected.

A schematic of the optimal DNN structure is presented 
in Fig. 12. As can be seen, the structure is composed of four 
3D layers and two flat layers. Although the structure seems 
simple, its accuracy is quite high for our application of rec-
ognizing dynamic hand gestures. Table 4 represents the con-
fusion matrix of the optimal DNN used over the test data. 
The matrix’s rows represent the class ID predicted by the 
model, and its columns represent the real class ID related to 
the dataset. The diagonal values indicate, in a specific label, 
how much of the data was classified correctly. As seen, 6 out 
of 15 labels’ classification accuracy is 100%, which means 
all of the data in these classes were predicted correctly. In 

the worst cases, which are label numbers 8 and 9, the clas-
sification accuracy are 99.0%. The average of the diagonal 
values is the same as the test accuracy, which is 99.7%.

We also trained the optimal network with different drop-
out values. Table 5 reports the accuracy and the number of 
epochs with respect to the dropout rate.

Fig. 12   The Schematics of the 
optimal DNN structure

Table 4   The confusion matrix of the optimal DNN used over the test dataset

P/A 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 99.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.52 0.00
3 0.00 0.00 0.24 99.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 99.50 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.77 0.00 0.00 0.00 0.00 0.00 0.23 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.48 99.04 0.00 0.24 0.00 0.24 0.00 0.00
9 0.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.01 0.00 0.00 0.49 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00
11 0.00 0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.00 99.75 0.00 0.00 0.00
12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00
13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.26 99.74 0.00
14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 99.75

Table 5   The accuracy and the number of epochs for the optimal DNN 
with respect to dropout rate

Dropout rate Accuracy (%) Number 
of epochs

0.2 99.7 42
0.35 99.8 57
0.5 99.6 78
0.7 98.4 116
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According to the mechanism used in this paper to train 
the optimal network, the logic of this table is reasonable. 
We can see that the final accuracy of the network does not 
change significantly with respect to the dropout rate, but 
the number of epochs the network needs to be trained alters 
significantly. The dropout technique temporarily deactivates 
a portion of trainable parameters in each epoch and reac-
tivates them in later epochs. This helps the network avoid 
overfitting and “memorizing” the data. Increasing this rate 
will make it harder for the network to train since a larger 
portion of its parameters are deactivated at each step, and it 
will take a longer time for it to learn the data. We expect to 
see better accuracy on any unseen dataset when the network 
is trained with larger dropout rates. However, too large val-
ues can adversely affect the training process and leave the 
network untrained (i.e. underfitting).

We also tried using different learning rates for the ADAM 
optimization of the final model. We previously reported an 
accuracy of 99.7 in 42 epochs when the learning rate is 
0.001; changing the value of the learning rate to 0.01 causes 
the network to diverge, and the DNN cannot be trained. On 
the other hand, changing the learning rate to 0.0001 and 
the network will reach an accuracy of 99.8 on the test data-
set, but it will need 121 epochs. Therefore, without gaining 
significant improvement in accuracy, the training process 
becomes unnecessarily slow. This suggests that it is con-
venient to choose 0.001 as the order of magnitude for the 
learning rate.

RASA uses the sign recognition module in an internal 
architecture along with other processing modules when 
interacting with human users. The sign recognition process 
needs to be done fast and requires minimum memory since 
a large number of other modules are functioning at the same 
time. Models with a huge number of parameters require a 
great deal of time to process their input, and they usually 
possess a large memory, which leads to unacceptable real-
time performance. Therefore, it was very important for us 
to implement a sign detection module that enables RASA 
to interact with human users in real-time. The model we 

used is implemented after training and has a relatively small 
number of parameters. Thus, it only takes a maximum of 
2–3 s for it to recognize a sign performed in real-time, even 
when implemented with all the other functions on RASA’s 
internal computer.

In summary, Table 6 provides a comparison between the 
proposed methodology and similar works in the literature. 
Works 1 to 3 obtained good recognition accuracy for a con-
tinuous sign performance used static signing (2 & 3), but 
this is not very useful in ISL. Unlike static signing, stud-
ies using dynamic signing (8) were unable to reach a high 
accuracy even though they deployed a very complex plat-
form using heavy networks and RNNs. However, it should 
be noted that they tested their system on a large number of 
classes (450 isolated gesture classes tested by the continu-
ous system). This is one of the limitations of our work, and 
we aim to increase the size of our dataset in future studies. 
Our study lies in the dynamic and isolated signing group 
and has a simpler methodology and higher accuracy com-
pared to other works in this group. The table suggests that 
our work is less or as complex relative to the other works 
and yet it yields a higher accuracy, which is clearly due to 
our optimization process. For example, number 6 also uses 
DNN for feature extraction in analyzing sequential data. 
However, there are some important differences to this work; 
the authors in that study determined the hyperparameters 
of the network from experience rather than an optimization 
process, and this could be the reason for the significant dif-
ference between the accuracy of the two studies. Moreover, 
using signal mathematical post-processing techniques (e.g., 
calculating the signal mean and standard deviation, signal 
filtering, etc.) and a sliding-window mechanism (rather than 
the state-image method implemented in this work) is a dis-
advantage when dealing with real-time operations and leads 
to inaccurate classification. Comparing results with other 
studies that do not use sensor globes might be unfair since 
the quality of the input data from other sensors is much dif-
ferent. The comparison provided in this paper is meant only 
to deliver the readers preliminary insights on the position 

Table 6   A comparison between our work and similar research in the literature

Index Reference Hardware Method Number of 
classes

Signing type Accuracy (%)

1 [20] Leap-Motion SVM + KNN 26 Static and isolated 79.83
2 [37] Kinect DBN + Le-Net 36 Static and continues 98.12
3 [36] Camera Convex hull + CNN 36 Static and continues 98.05
4 [41] Sensor glove M-KNN 40 Dynamic and isolated 98.90
5 [39] Camera HMM 20 Dynamic and isolated 97.48
6 [40] EMG Sliding window + DNN 17 Dynamic and isolated 83.23
7 This work Sensor glove State-image + DNN 15 Dynamic and isolated 99.7
8 [35] Camera VGG-Net/AlexNet + LSTM 450 Dynamic and continues 75.70
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of this work in the literature and how different our proposed 
methodology is from similar works.

In this study, we classified 15 ISL signs, which are fewer 
than the other studies in Table 6. However, if we review the 
methodology of this work, we see that no stage of the pro-
cess is dependent on the number of classes. If we wanted to 
classify more ISL signs (e.g. 20, 30, or more), we would still 
be able to preprocess the data using the state-image method 
and create a similar dataset (as the state-image preprocessing 
has no relationship with data labels). Then, the optimization 
process would propose a DNN that best classifies the new 
dataset, probably a network with a more complex structure, 
a higher number of trainable parameters, and maybe even 
a different learning method. In fact, the increased diversity 
and/or complexity in the dataset is compensated by more 
complexity in the optimal DNN’s structure and learning, 
and we do not expect to see a dramatic performance loss 
when applying the methodology of this work to a dataset 
with more classes. To address this issue more reliably, we 
conducted an experiment to assess the system’s performance 
on a bigger dataset. We collected more data for the previ-
ous signs and added five new signs to the original dataset, 
increasing the number of data in each class to 2250 using 
the same preprocessing method. The developed dataset con-
sisted of 20 classes and 45,000 data in total. To assess the 
system’s performance on the new dataset, we applied the 
same optimal DNN (calculated for the original dataset) to 
the developed dataset without doing the optimization pro-
cess for the new dataset. All of the parameters of the network 
remained the same except for the last Dense layer, which 

was changed from 15 to 20 (since we have 20 classes in 
this case). Although we did not look for the optimal DNN 
for the new dataset, the results were still promising. The 
previous optimal DNN was able to train on the new dataset 
with an accuracy of 97.5%. This helps prove our claim that 
increasing the number of classes and/or the number of data 
in the dataset would not adversely affect the overall system’s 
performance in a dramatic way.

7 � Application in Human–Robot Interaction

So far in this paper, we have discussed the mechanism by 
which RASA can recognize ISL signs and determine per-
formance accuracy. The whole mechanism is integrated 
into the Sign Recognition Module, which takes the recorded 
glove sensory data as input and returns the sign class and 
related accuracy as output. This module is part of a robotic 
architecture that RASA uses to perform adaptive ISL teach-
ing. In this section, we briefly discuss this architecture and 
explain how the methodology of this paper is utilized in 
human–robot interaction.

7.1 � Implementation on RASA and Experimental 
Setup

Figure 13 shows the general architecture designed for RASA 
to perform adaptive ISL teaching. Describing the aim of 
each module in this architecture is out of the scope of this 
paper; however, to provide useful insights on the real-time 

Fig. 13   RASA’s adaptive teaching architecture
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application of this paper we will explain how sign language 
recognition helps RASA to interact with human users.

In the inner loop of teaching, the robot first performs 
the Word Selected for each session according to the cal-
culated output parameters and waits for the user. These 
parameters are calculated using a fuzzy-logic based 
approach that takes user parameters as input [53]. RASA 
is pre-learnt to perform a specific set of ISL signs using 
different approaches, all having a point-to-point path gen-
eration method for the robot’s arm to reach a particular 
geometry; meaning that it uses a fixed pattern to perform 
any sign and hence, these gestures are not altered dur-
ing the teaching process. Although RASA performs ISL 
signs for the users in order to teach them, it does not learn 
from the users how to alter its gestures (the only thing that 
RASA changes is the performance speed and the number 
of repetition). This waiting time after robot’s performance 
is related to the user's readiness and the length of time for 
the robot's performance to teach the appropriate words, 
which is determined by the start test module. A supervisor 
helps the start test module to initiate. Therefore, a human 
user determines when the user should begin to perform 
and also when the performance has finished; this means 
the segmentation of real-time glove data is not automatic 
and is done by a human supervisor. This is why we have 
made our sign recognition process as robust as possible to 
missing/stagnation frames in the data augmentation stage. 
Next, the user utilizes the glove to perform the presented 
word, which the robot then evaluates as successful or not. 
The Data Recording Module stores the data transmitted 
from the data collection glove. The Sign Recognition 
Module determines what word the user has performed 
and its degree of accuracy using the mechanism described 

in this paper. Then, according to RASA’s assessment on 
the user’s performance, the teaching/user performance is 
repeated until the user reaches an acceptable performance, 
or totally fail at that sign. The users hopefully learn how 
to correctly perform that particular sign when the teaching 
is terminated.

Figure 14 shows a snapshot of the performed HRI setup, 
including a user wearing a sensory glove sitting in front 
of the robot. The supervisor initiates and supervises the 
teaching process. To enhance the robot’s agility in inter-
acting with human users during the teaching sessions, the 
sign recognition process is conducted in an external server, 
and the results are sent back to the robot for further pro-
cessing (however, the whole process can also be imple-
mented on RASA’s computer); namely, the data-capturing 
glove is connected via a cable to the external server (in this 
case, the supervisor’s computer) where the entire recogni-
tion process (state-image preprocessing + feeding to the 
DNN) takes place. Then, the results are transmitted via 
wi-fi and WebSocket protocol to RASA. Figure 15 gives a 
schematic view of this setup.

The mentioned robotic architecture shown in Fig. 13 is 
a fuzzy logic based architecture that makes it possible to 
adapt the robot’s teaching output using four aspects based 
on the users' past and present performance: (1) What words 
should be selected for teaching, (2) How many times each 
word should be repeated in each training session, (3) What 
should be the speed of the performance of the signs, and 4) 
What should be the emotional valence of RASA to the user's 
performance? [53] Therefore, the sign recognition module 
is a remarkably significant element of this methodology for 
RASA to learn from the users and adjust its teaching based 
on their performance.

Fig. 14   The experimental setup 
for the first experiment
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7.2 � HRI Assessment and User Evaluation

To assess whether the proposed methodology works 
effectively in human–robot interactions, we conducted 
an experiment that incorporates human users interacting 
with RASA in teaching sessions; namely, RASA teaches 
users ISL signs for a fixed amount of time and scores them 
according to the correctness and accuracy of their per-
formance. It should be noted that the aim of this experi-
ment is only to evaluate the users’ attitude and satisfaction 
with the proposed methodology and to find out whether 
the robot’s ability to recognize ISL signs in real-time is 
acceptable in the users view.

To be more specific, RASA taught ISL signs, each for 
10 min, to 8 human users, who were then asked to fill out 
the standard Unified Theory of Acceptance and Use of Tech-
nology (UTAUT) questionnaire [54]. Each participant used 
a 5-point Likert scale (i.e., 1: totally negative, 2: negative, 
3: neither positive nor negative, 4: positive, and 5: totally 
positive) to respond to the questions. Different items of the 
standard questionnaire helped us to evaluate the method-
ology of this work. The items investigated in the UTAUT 
standard questionnaire are shown in Fig. 16. Roughly half 
of the total participants had robotic knowledge, while the 
other half did not. There was an approximately equal gender 
balance, and the age range was from twenty to fifty.

We reported four items that directly address the infor-
mation we needed on the HRI assessment regarding this 
paper (see Fig. 16). For the ATT item, the users scored 3.75 
on average with a standard deviation (STD) of 1.01 on 24 
observations (8 participants*3 questions), meaning that the 
users hold an approximately positive attitude toward the 
robot’s ability to interact with them using SL. For the PENJ 
item, the users scored 4.03 on average with a STD of 0.64 on 
32 observations (8 participants*4 questions), indicating that 
they perceived on average positive feelings of joy associated 
with their interaction with RASA. However, for the PEOU 
item, the users scored 3.38 on average with a STD of 0.93 on 
16 observations (8 participants*2 questions), indicating that 
a significant number of the users were not able to find the 
proposed interaction mechanism easy to use (this is mainly 
associated with the data-capturing system). Finally, for the 

Fig. 15   A schematic of the experimental setup

Fig. 16   Items of the UTAUT questionnaire
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PU item, the users scored 3.94 on average with a STD of 
0.66 on 16 observations (8 participants*2 questions). This 
shows that the users perceived on average that the mecha-
nism RASA uses to interact with them is useful. For our 
8 participants, the Cronbach’s alpha for the ATT, PENJ, 
PEOU, and PU are 0.6, 0.6, 0.4, and 0.5, respectively. It 
should be noted that the small number of the participants in 
the HRI section of this study was a serious limitation which 
causes our preliminary exploratory findings to be consid-
ered as a proof for concept and an overall estimation regard-
ing the developed HRI platform by using machine learn-
ing algorithms. While taking caution, we cannot make any 
strong claims based on this limited number of data. All in 
all, according to the statistical information discussed in this 
section, we preliminary conclude that the proposed meth-
odology of this paper has been successful in developing an 
ISL sign recognition module that enables RASA to interact 
with users in an acceptable manner in terms of robustness, 
accuracy, and speed.

8 � Limitations and Future Works

The work described in this paper is one of the first serious 
attempts in the domain of integrating Iranian Sign Language 
(ISL) with robotic systems and is, of course, susceptible to 
limitations and weaknesses. We conducted this study with 
the available resources we had at the robotics lab and a lim-
ited research grant.

The main limitations of this study were the small number 
of collected data as our database, the limited number of the 
chosen signs to be classified, and the lack of the robot’s 
ability to recognize continuous sign in a sentence/phrase. 
Currently, the RASA robot can only detect each individual 
chosen word when the start/end time of the performed signs 
are sent to RASA by the robot operators. The dataset used in 
this study consisted of 30,000 images. We used several tech-
niques in data preprocessing and training the model to avoid 
overfitting as much as possible. We also kept the trainable 
parameters of the final model as low as possible (fewer than 
the number of our data) to compensate for the size of the 
dataset and the simplicity of our model. In our next studies, 
we would like to increase the number of performing samples 
for each sign in the dataset as well as the number of chosen 
signs to enrich the vocabularies of the robot. Our future work 
will also be empowering the robot to recognize the words 
during online sentences/phrases.

To get a realistic test result, the test data should be 
obtained from 'other' users, and although the test data is 
not included in any stage of the entire project, this paper 
uses data from the same user who created the training data. 
Also, we have used augmented data to report the final accu-
racy, which is not normally done. We intend to do a more 

thorough future experiment with an expanded dataset from 
new human subjects without presenting the data to the net-
work in the training step.

Furthermore, the data-capturing system in this study is a 
sensory-glove, which can produce discomfort in users inter-
acting with the system. Although sensory gloves generate 
more reliable output data compared to other data capturing 
systems, they are also a disadvantage as they can adversely 
affect the users’ fluency while performing SL signs. As a 
preliminary exploratory finding, the users’ feedback (which 
we discussed in Sect. 7.2) indicates that the average per-
ceived ease of use of the system is negatively influenced 
by the data-capturing system, as they might encounter dif-
ficulties performing signs normally, in terms of naturality 
and speed.

Finally, applying the state-image method omits the effect 
of performance speed as it down-samples all input signals 
into a 60 frame window. Thus, if two ISL signs have the 
exact same hand and fingers gestures but differ in perfor-
mance speed, they would probably be indistinguishable by 
the state-image method. Also, the data-collection setup can 
only report the positional and the rotational data of the hand 
and fingers. We do not have the instrument to capture the 
forces exerted on the hand and/or fingers’ muscles during 
the performance of the sign; therefore, we have not used 
them in any stage of the study. However, to the best of our 
knowledge, performance speed and muscle forces are not 
deciding factors to determine the meaning (in our applica-
tion, the class) of ISL signs, and thus, this limitation is not a 
serious problem for our particular application.

9 � Conclusion

In this paper, a platform was proposed for automatic ISL 
sign/word recognition using a Data Capturing Glove on the 
RASA robot as a practical application of machine learn-
ing in social human–robot interaction. As the first step 
of this study, the data gathering process, as well as the 
methods for making the input data, robust with regard to 
the environmental and users’ conditions, was done. Fifteen 
ISL classes were chosen to investigate the platform’s rec-
ognition accuracy, and forty performances were recorded 
for each selected word (i.e., creating a dataset including 
600 data). Next, the data was augmented via the methods 
described in the paper to produce a modified dataset with 
30,000 data. It should be noted that the generated data 
also became more robust to certain deficiencies. Then, 
we coded all of the input data as an image, turning the 
dynamic nature of the hand gesture detection problem 
into a static image processing problem. After describing 
the preprocessing stage, the main structure of the used 
DNN and the training method was presented in detail. To 
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optimize the performance of the system for higher over-
all accuracy and less trainable parameters, four hyperpa-
rameters of the network, including the number of filters 
in the first and second convolution layers as well as the 
kernel sizes, were innovatively optimized via a Continu-
ous Genetic algorithm. The main characteristics of the 
optimization algorithm were described in the manuscript. 
After the optimization process, the final structure of the 
DNN was determined, and its performance was investi-
gated. We observed a notable mean performance accu-
racy of 99.7% for our proposed DNN on the test data in 
our dataset, which is quite promising. The DNN also has 
slightly less than 21,600 parameters, which helps our 
robot to detect ISL signs and continue teaching in real-
time since the network does not require a large memory or 
processing power. Therefore, with a simpler methodology, 
compared to the state-of-the-art practice, we were able 
to implement a platform that can classify ISL dynamic 
gestures with quite a high accuracy, it is also remarkably 
robust against different users and/or environmental condi-
tions. After implementing the sign recognition module in 
a robotic architecture, we conducted an HRI experiment 
to assess the system’s performance in real-time applica-
tions. After an initial statistical analysis on the standard 
UTAUT model with the small number of the participants 
(as a preliminary analysis for the proof of concept), it 
was revealed that the system enabled RASA to interact 
with human users in an acceptable manner in terms of 
robustness, speed, and accuracy. The proposed methodol-
ogy can also be easily implemented to detect any other 
hand gesture patterns, which allows us to interact with 
machines in the Human–Computer Interaction (HCI) and 
Human–Robot Interaction (HRI) contexts.
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