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Abstract
Social robots may soon be able to play an important role in expanding communication with the deaf. Based on the literature,
adaptive user interfaces lead to greater user acceptance and increased teaching efficiency compared to non-adaptive ones. In this
paper, we build a robotic architecture able to simultaneously adjust a robot’s teaching parameters according to both the user’s past
and present performance, adapt the content of the training, and then implement it on the RASA robot to teach sign language based
on these parameters in a manner similar to a human teacher. To do this, a word to teach in sign language, repetition, speed, and
emotional valence were chosen to be adaptive using a fuzzy logic mechanism. Then, two groups of participants were recruited.
For the first group, the robot teaches without the adaptive architecture, while for the second group, the teaching is done with the
adaptive architecture. The assessment phase was conducted with 8 users in person and 48 users virtually. A standard UTAUT
questionnaire was selected to assess the effectiveness of this methodology by comparing different items from the two groups of
users. Statistical analysis of the T-test and Cohen’s d effect size found that the second group felt the robot’s adaptability
significantly more than the first group, indicating that the methodology used in this study was effective and that the robot’s
ability to adapt was felt by users. In addition, the results of the two groups were significantly different in several other items,
revealing the effects of the adaptive architecture.
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1 Introduction

As robotsmove from industrial environments to homes, studying
and optimizing Human-Robot Interactions (HRI) has become
very important. While users in industrial environments are com-
patible and comfortable with the features of robotic equipment
used in their activities, the same degree of familiarity is missing
in interactions with social robots. This issue of technical accept-
ability is especially important for the future success of social
robots and is studied in the field of social interactions [1]. In

recent years, research results have been satisfactory for using
human-social robots in various fields such as education, medical
treatment, entertainment, etc., i.e., using social robots to teach
Sign Language (SL) to children with hearing impairments [2].
Research has shown that using a social robot in the process of
educating children can greatly increase their educational efficien-
cy, and according to child psychological research,when used as a
game, can be an asset in their intellectual development [3]. The
issue of adapting a robot’s capability to users in the field of
human-robot interaction has recently received attention in robotic
studies.

It has been well demonstrated in the literature that adaptive
user relationships lead to significantly greater robot accep-
tance by users than non-compatible robots [4]. Adapting so-
cial robot teaching methods to the user and/or training content
improves the robot’s perceptual and cognitive level. In our
case, this ability to adapt can push the process of teaching sign
language to new levels of efficiency and convenience, thereby
helping to build better social relationships with hearing people
for hearing impaired and deaf individuals.
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Inspired by classic papers that deal with adaptable inter-
faces ([4, 5]), as well as works done in [1, 6], previous works
can be classified into three categories. The categories were
based on the robot’s mechanism of adaptability and user pro-
files, whether or not this process is done by building user
models, and if so, whether the user model is static or dynamic
(i.e., stability and continuity of user models over time).
Systems with a dynamic model continuously improve their
perspective and overall view of the user over time and adapt
to their changes, which calls for increasing the autonomy and
robustness of the system. The adaptive teaching process re-
quires a model of the user’s personality, preferences, and per-
formance and needs to be updated as these factors change over
time. Therefore, we only review the state of the art robotic
systems that use a dynamic user model to adapt their system
to users.

Karami et al. addressed the issue of user adaptation as the
primary objective of a mobile robotic system [7–9]. The sys-
tem learns user preferences using interactive effects delivered
during repeated human-robot interactions, and then uses a
Markov Decision Process (MDP) decision-making formula-
tion to review its policy according to the user preferences. One
of the results highlighted in the work is that the robot can adapt
very quickly to a new user by using the model to generalize
the gained rewards, as it has experienced interactions with
other users in the past. A “pro-active” system provided by
Grosinger et al. [10] integrates into the ACCOMPANY pro-
ject introduced by Abdollahian et al. [11]. The system main-
tains a user mode, as well as a set of rules for evolving that
mode overtime to keep the user in a “good”mode. By observ-
ing and analyzing the user’s choices as well as the environ-
ment, the robot identifies opportunities for appropriate action
that can distract the user from reaching an unfavorable situa-
tion. Ali and Tapus conducted a study [12] that used a new
fuzzy methodology to identify user emotions online. Both
Nao and Alice robots were used for functional testing. An
attempt was made to adapt the robot’s behavior to build a
better long-term interaction with the user based on his person-
ality and emotions. Westland, Gordon, et al. [13] introduced a
teacher assistant companion robot to help English-speaking
children to learn a second language (Spanish). Two aspects
of this interaction were personalized for each child: 1) The
content of the game (i.e., choosing which words to teach),
and 2) The robot’s emotional response to the child’s emotional
state and performance. Then, in the same year, Gordon and
Breazeal [14] and the authors of [15] in 2016, introduced an
Intelligent Tutoring System (ITS) that aims to help children
learn to read. The system maintains knowledge of the user’s
reading level, which is evaluated and updated periodically
with an active learning technique. This information is then
used to adapt the game that the child and the robot are playing,
and the robot also adjusts its motivational strategy using ver-
bal and non-verbal activities. Aylett et. Al. in [16] also

introduced an empathic robot to help the user learn geography,
it keeps a record of the person’s skill level, such as how to use
polarization and map symbols, and adapts its actions to this
level of skill. This practice occurs in the organized literature of
an architecture called EMOTE, and the process of robotic
perception and adaptability occurs in a modular manner.
Tozadore in [17] also implemented an adaptive cognitive ar-
chitecture called R-Kessel to provide a new mechanism to
help improve interactive teaching activities (such as teaching
geometric shapes to children) on the Nao social robot. In ad-
dition, in [18] an adaptive model of educational resources is
presented that promotes robotic teaching in different courses.
Based on the recorded student data, the system builds student
models that evolve over time and categorize users based on
their skill levels and knowledge. In addition, the learning en-
vironment is dynamically adapted to each user according to
the actions taken.

Since a great deal of the mechanisms proposed in the liter-
ature function directly based on the data derived from the
user/environment, they usually have to cope with the issue
of outliers in the data and/or uncertainties in the modeling
process. Therefore, the output stability of these systems is
proportional to the degree that these outliers and uncertainties
are handled. For example, the authors in [19] investigated the
stabilization problem of neural networks with unbounded con-
tinuously distributed delays via impulsive control. By estab-
lishing an impulsive infinite delay differential inequality, they
derived some sufficient conditions ensuring the stabilization
of the unique equilibrium point. Similarly, in [20] the authors
apply techniques to calculate filtering parameters that guaran-
tee the finite-time boundness and strict dissipativity of the
filtering error dynamic system. Also, in [21], the authors ad-
dressed the issue of fault-tolerant control in systems with dif-
ferent sensors by proposing two strategies for robust estima-
tion of linear stochastic models in presence of model over-
simplifications and noise. Also in the field of controls, the
work [22] examines a PD-type iterative learning control algo-
rithm for a class of discrete spatially interconnected systems
with unstructured uncertainty. Although the methodology of
this work shows promising results in practice, it is adversely
affected confronting systems with unmeasurable states.
Uncertainties in fuzzy control systems have also been
discussed in the literature. For example, in [23] the problem
of various data missing in the design of a fuzzy controller in
networked control systems is addressed. The authors used an
auxiliary random series method to describe the data transfer-
ring in the network. By theory analysis and simulation, the
compensation of missing data implemented by a buffer
showed to be effective.

In this study, we designed and implemented an adaptive
teaching architecture to empower the RASA social robot for
adaptive teaching of Iranian Sign Language (ISL) to users.
This fuzzy logic based architecture makes it possible to adapt
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the robot’s teaching output using four aspects based on the
users’ past and present performance: 1)What words should be
selected for training, 2) Howmany times each word should be
repeated in the training process, 3) What should be the speed
of the performance of SL signs, and 4) What should be the
emotional reaction (valence) of the robot to the user’s perfor-
mance? A very important innovation and the challenge of this
research is that the robot’s compatibility and adaptation to the
users is maintained through performance feedback and is si-
multaneously accomplished through two features: one, the
robot’s logic concerning its general teaching program
(General adaptability), and two, the personalization of the
teaching program by tailoring it to a particular user (specific
adaptability). After each training session, the parameters
governing the adaptability system get modified both in the
user profiles and word profiles at the same time, which en-
ables robot teaching program to be adaptive toward a specific
user AND all of the following users. By executing this sce-
nario: a) During teaching sessions, the robot’s inner teaching
logic will be adapted, which will make it faster to adapt to new
users, and the robot will gain experience from its previous
training, and b) When interacting with the same user again,
the robot teaches more intelligently, based on the user’s pre-
vious and current performance.

As far as the authors know, there has been no such research
on making the robot’s teaching program both generally and
specifically adaptive based on the users’ performance at the
same time. As seen in previous works, most systems start
building a dynamic user model for new users from scratch.
They initially create a match between the new user and previ-
ous users and then select the closest model to them. This slows
down the process of adapting to the new user. In this work, all
previous teaching will enhance the robot’s ability to adapt,
and new users will benefit from the robot’s past teaching
experience.

In section 2, the methodology of this work is presented, the
robotic architecture implemented is described, and each block
is examined in details. Then, the experimental setup and the
evaluation scenario is discussed in detail. In section 3, the
results of the experiment and the statistical parameters are
presented, and a discussion is made based on the results. In
section 4, the limitations of this study and suggested future
work are presented. Modeling errors and uncertainties of the
algorithm are discussed in section 5. Finally, in section 6, a
conclusion is made on the proposed methodology.

2 Methodology

To make the process of robotic teaching adaptive, it is neces-
sary to form two different groups of dynamic classifications,
1) Word profiles and 2) User profiles, and have them evolve
over time. In the classes related to the word profiles, the

following cases are used to adjust the degree of truth
(membership) of the word in a set of fuzzy membership func-
tions (i.e., easy, medium, and hard word): 1) the average num-
ber of times performed by people to achieve the correct per-
formance, 2) the average accuracy of people’s performance,
and 3) the average speed of each person’s performance.
Similarly, the same parameters are utilized in the user profile,
only this time they are related to that particular person, to
adjust the user’s degree of truth in a set of fuzzy membership
functions (i.e., weak, medium, and strong user). Therefore, the
four adaptive output parameters of the robot will be a mathe-
matical function of both the class parameters of the word itself
and the parameters of the user profile at the same time.
Linking the mathematical parameters of these two classes
based on the individual’s performance parameters to the robot
outputs was one of the most important challenges.

2.1 Fuzzy Logic

The term fuzzy logic was first coined in 1965 by Professor
Lotfizadeh in the theory of fuzzy sets [24]. Since the introduc-
tion of fuzzy logic, this tool has been used in many applica-
tions of engineering and artificial intelligence. In the field of
robotics, fuzzy logic has been used in cognitive processes and
artificial intelligence [25–27], and in the field of control, it has
been used in many applications such as adaptive fuzzy control
[28, 29]. Fuzzy logic was formed based on the observation
that humans naturally make their decisions using information
that is inaccurate and even ambiguous. This logic is a mathe-
matical tool by which this ambiguity and inaccuracy in data
can be expressed. Fuzzy models can identify, express, manip-
ulate, interpret, and make use of data in which there is a degree
of uncertainty and ambiguity [30]. While variables are de-
scribed with numerical values in classical mathematics, non-
numerical and so-called linguistic values are used to describe
rules and variables in fuzzy mathematics [31].

Teaching is a comparative process that deals with many
linguistic variables [32, 33]. When reviewing the input infor-
mation received from students or the content of a lesson, a
human teacher does not process the data with classic crisp
logic; but instead works with linguistic variables; for example,
he/she generally knows in his/her mind that one user is weak,
another user is average, and another user is strong. The same is
true for the teaching content; some lessons are difficult, some
are medium, and some are easy. Therefore, a change in the
average score of a person does not suddenly change his judg-
ment about that person, but rather, it changes with a gentle and
reasonable slope. Moreover, this logic helps the teacher adjust
the teaching program easier and faster in terms of language
variables. For example, when a student is weak and the con-
tent is difficult, the teacher needs to slow down and increase
repetition; conversely, when the lesson is easy and the user is
strong, the teacher can teach quicker and repeat less. In order
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for a teaching robot to perform similarly to a human teacher, it
is necessary to work with linguistic variables instead of crisp
variables. This makes the adaptability process more efficient,
the output of the robot more compatible with inputs, and the
logic with which the robot works more descriptive for
humans. In this paper, the robot’s fuzzy databases were creat-
ed for users and words, and then the robot’s adaptive logic was
implemented by building the robot’s fuzzy rules.

2.2 RASA Robot and the Glove Sensors

The RASA robot is a humanoid robot with a total of 32 de-
grees of freedom (29 degrees of body movement including
active fingers and 3 degrees of lower-body movement); it
was designed to teach Iranian Sign Language to deaf children
[34]. The robot receives input data from users’ performance
using a glove, processes it with a deep neural network, and
then communicates with children to teach them different ISL
signs. Figure 1 shows the robot during ISL gestures. The
Glove sensor used in this study was a Perception Neuron V2
suit from Noitom Ltd. It utilizes some IMU and gyro sensors
to capture the finger and hand movements.

2.3 Adaptive Teaching Architecture

In general, to get a robot to accurately perform a particular task
in different environmental conditions, it is good practice to
construct a general architecture that considers which compo-
nents do each small part of the work and work well together.
To do this, the design of the required algorithm is first simpli-
fied, and then a step-by-step design can be used to determine
(accurately and effectively) which part is not performing its
role well. Figure 2 shows the general architecture designed for
the adaptive ISL teaching presented in this work.

We tried to design the architecture so that it includes all the
functions a robot requires to be able to teach sign language,
similar to a human teacher. In other words, if all the compo-
nents of the proposed architecture work and communicate
with each other properly, the process of teaching is done adap-
tively and is consistently in line with the user’s performance

and the necessary teaching content, and the main goal of this
research is satisfied. We now turn to the algorithm involved in
this architecture.

Initially, the username is given to the algorithm as an input.
The training process begins by simply giving the name/ID of
the user to the robot. No other input is required. Then, in the
user Scanner Module, the robot checks the user’s history to
determine the student’s weak and strong words. The Word
Selector Module then determines what words should be se-
lected for the current training based on the information suc-
cessfully passed in the previous module. The Word Analyzer
Module reads the information recorded in the word profile and
uses the information to calculate the word score according to
the word history. The User Analyzer Module does the same
for the user’s profile.

Next, we come to one of the main and largest modules of
this architecture, namely the Robot Output Generator Module.
This module is the core of adapting the robot’s teaching pro-
cess. By taking the user’s profile and the word profile infor-
mation, it calculates the user’s and the word’s scores, adjusts
their position in the fuzzy membership functions, and deter-
mines how the robot’s outputs should change. The Advertiser
then codes and sends the emotional response, number of rep-
etitions, and speed of performance to the robot. Now the robot
performs the Word Selected for session according to the cal-
culated output parameters and waits for the user. This waiting
time is related to the user’s readiness and the duration of the
robot’s performance to teach the appropriate words and is
determined by the start test module. A supervisor helps the
start test module to initiate. Now, it is up to the user to use the
glove to perform the presented word, which the robot then
evaluates as successful or not.

The Data Recording Module stores the data transmitted
from the data collection glove. The Sign Recognition
Module determines what word the user has performed and
its degree of accuracy using the position data of the user’s
fingers/arms captured from the glove. It then sends its output
back to the robot to set the robot’s emotional state; this cycle is
repeated in an internal loop as many times as necessary deter-
mined by previous modules. When the internal loop is

Fig. 1 The RASA robot
performing ISL gestures
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complete, the Updater Modules write the new information on
the user’s and the word’s profile. The Teaching Terminator
Module decides whether the training process should continue
for that user and if the main (outer) teaching loop needs to be
repeated or the training process can be terminated for that user.
Correctly implementing this architecture shows how a robot
can adapt its teaching process in a manner somewhat similar
to a human teacher.

We examine some of the important components of this
architecture in more detail in the following sections.

2.3.1 Word Selector Module

This module performs one of the important tasks of the algo-
rithm. We claimed that the robot adapts to its user by custom-
izing the words it teaches. The words chosen for training de-
pend on what words the user has successfully passed or failed
in their previous interactions with the robot. Therefore, this
module uses a random selection process with a heterogeneous
probability density to select the words. In this way, when that
word is rejected or passed, the weight of the probability of
choosing it changes, but the weight of all the words before
training for the user is equal to 1. In other words, if we show
the weight of the probability of choosing the nth word with
weightn and the number of passes and rejections for that word
with np and nf, respectively, we obtain the following equation:

weightn← 1−0:5npþ0:5nf
� �

I 0<weightn ≤3ð Þþ0:1I weightn ≤ 0ð Þþ0:3I 3<weightnð Þ

Where:

I Statementð Þ¼ 1jStatementf g

Is the identity function that returns 1 only if the statement is
true, and 0 otherwise.

In other words, words that the user has previously been
able to pass are not completely removed from the tutorial
cycle but are less likely to be selected in a random process.
This makes it possible for the user to retain those words for
future tutorials, allowing them to be reviewed and consequent-
ly keeping them in mind. Therefore, in practice, the teaching
process is unique to each user and focuses more on the words
in which the user is weaker.

2.3.2 Analyzer Modules

At this point in the algorithm, we know which user and which
word to teach. Thus, the Word Analyzer and the User
Analyzer modules open the word and user profiles, respective-
ly, to extract information about the user’s past performance
and perform calculations accordingly. These modules read
information from all training sessions, averaging three param-
eters: 1) number of repetitions, 2) accuracy, and 3) speed of
the user in all previous sessions. That is, a total of six param-
eters are sent as output to the next module: three of which are
related to the “user” and three of which are related to the
“word”. These parameters will be used in the next module to
calculate the score. If the user or word is not used in any
training session, their score is 50 (out of 100), and their status
is considered perfectly medium/normal.

2.3.3 Robot Output Generator Module

This module forms one of the most vital points of the teaching
algorithm as the principle of adapting the robot’s teaching

Fig. 2 The adaptive teaching architecture proposed in this study
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occurs here. In this block, using the six inputs received from
the previous modules, the output of the robot is determined so
that it is adaptive for that training session (i.e., that particular
user and that particular word). The six inputs of the module
are: 1) the average accuracy of the user in performing the signs

(Acuu ), 2) the average number of the user repetition in

performing words ðRepu ), 3) the average speed of the user’s

performance in different words (Spdu ), 4) the average accu-
racy of different users on that word (Acuw ), 5) the average
number of times users need to repeat before passing that word

ðRepw ), and finally, 6) the average speed of users performing

that word (Spdw ). The three outputs of this module are 1) the
number of times the robot has to perform the word for the user
(RepR), 2) the robot’s emotional reaction to the user’s perfor-
mance (EmoR), and 3) the speed at which the robot must
perform the word (SpdR). Figure 3 shows a schematic of the
internal blocks of this module.

As seen, three parameters related to the word profile are
sent to the internal module to calculate the word score, and
three parameters related to the user profile are sent to the
internal module to calculate the user score. Depending on
the parameters given, these modules assign a score be-
tween 0 and 100 to the user and the word. Then, using
the given score and the predefined fuzzy membership func-
tions, the degree of truth (membership) for the user and the
word to their fuzzy classes is determined. The fuzzy data-
base is defined in these two modules. Then, with the de-
gree of truth of the fuzzy functions, the Output Regulator
Module uses the fuzzy rule base to determine the de-
fuzzified outputs of the robot. Therefore, this module cal-
culates the robot’s adaptive outputs by taking the user’s

performance parameters. To make the point clearer, let us
take a closer look at some of these internal blocks.

Word Score Calculation Module By capturing and averaging
the parameters of repetition number, accuracy, and the perfor-
mance speed of users on the word, the goal of this module is to
determine the word’s degree of truth for the “easy” class (αw),
the “medium” class (βw), and the “hard” class (γw). To do this,
it must first assign a score to the word using the parameters,
and then, by using the position of the score in the fuzzy mem-
bership functions, determine the three parameters related to
the three fuzzy classes: easy, medium, and hard.

To score the word, this module uses a non-linear interpo-
lation function. That is, a human teacher first determines the
score of the word against a certain number of input parameters
and then uses the interpolation for other inputs. The word
score (Rw) is a score between 0 and 100, with 0 for quite easy
and 100 for quite hard. The word score is determined by a
second-order interpolation between points assigned by the hu-
man teacher. Then, based on the fuzzy database of words, the
degree of truth for the fuzzy classes of the word is determined.
The shape of these fuzzy membership functions is shown in
Fig. 4.

Therefore, by defining fuzzy membership functions linear-
ly according to the figure above, the degree to which the word
belongs to each of the fuzzy classes is easily determined via
the following equation:

αw ¼ I R≤25ð Þþ 50−R
25

I 25<R<50ð Þ

βw¼
R−25
25

I 25≤R<50ð Þþ 75−R
25

I 50≤R≤75ð Þ

Fig. 3 The internal blocks of the Robot Output Generator Module
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γw¼
R−50
25

I 50<R<75ð ÞþI 75≤Rð Þ

This is where the fuzzy databases are built. According to
the above equation, scores below 25 mean quite easy and
above 75 mean quite hard. Scores between these two
values are considered to belong to two fuzzy membership
functions, i.e., a score of 60 means that the word is both
medium and difficult, but we believe it is more medium.
The linearity of the membership functions speeds up the
robot’s performance significantly and allows real-time
adaptations.

The User Score Calculation Module does the same thing
with the user profile. That is, a human teacher assigns a score
to a user based on some inputs and performs interpolation for
the rest of the inputs to calculate the user’s score. The user’s
fuzzy classes include “weak” (αu), “medium” (βu), and
“strong” (γu). Similar to the words, user membership func-
tions are considered linear. We need this degree of fuzzy
memberships at the fuzzy rule base to calculate the robot’s
output.

Output Regulator Module Using fuzzy membership degrees
for each class, this module calculates the degree of truth for
each of the rules in the fuzzy rule base, and then uses their
weighted average to generate the appropriate output of the
robot. The fuzzy rule base is formed for the robot’s output
speed, the number of robot repetitions, and its emotional re-
sponse (in both failed and passed situations). The degree of
truth for any fuzzy rule is equal to the product of the multi-
plicity of membership degrees in each of its components.

To make it easier to show fuzzy rules, we have compiled
them into nine celled tables that represents the nine fuzzy
rules. Figure 5 shows the fuzzy rules related to the number
of repetitions and the output speed of the robot. Figure 6 re-
lates to the fuzzy rules of the robot’s emotional response in the
correct performance mode and the wrong performance mode.

Figure 5 states that if the user status is normal and the word
status is difficult, the number of repetitions of the robot should
be high and its performance speed low. Conversely, when the
word is normal but the user is strong, the number of repetitions
should be low and the performance speed should be high. The
belief is that each of the nine fuzzy rules will be the multipli-
cation of the corresponding truth degrees of the word and the
user class. Finally, when the belief in all nine rules is taken
into account, their average is taken to perform de-fuzzification
operations, and a numerical value is calculated for the repeti-
tion number and speed of the robot. The same goes for the
robot’s emotional response. For example, if a weak user is
unable to pass a hard word, the robot’s emotional response
is happiness to increase the user’s motivation. On the other
hand, a strong user can successfully pass a medium word, so
the robot’s emotional response is neutral.

Following this description of the Robot Output Generator
Module, we can see how the output of the robot (hopefully)
adapts to the user’s performance, as well as the difficulty or
simplicity of the teaching content. After all the robot’s output
parameters have been calculated, these parameters must be
transferred to the next module so that the robot can finally
perform using these parameters.

2.3.4 Sign Recognition Module

The function of the Sign Recognition Module is to determine
how accurately the user has previously performed, based on
the data (the user’s hand positions) saved from the previous
module. By recording the position of the hand over time, this
module should be able to deliver an output list determined by
what belief the user has performed for each of the available
words. This module was developed in our previous work (cur-
rently under review) with the help of a Deep Neural Network
(DNN) and the state-image methodology. We observed accu-
racy of 99.7% for the proposed DNN for a set of 15 ISL signs.

Fig. 4 The fuzzy membership functions related to the words

J Intell Robot Syst          (2021) 102:48 Page 7 of 19    48 



2.3.5 The Inner Loop of Teaching

If we take another look at the main (outer) teaching loop in
Fig. 2, it is clear that there is also an inner training loopmarked
with a blue box. The inner teaching loop is repeated as many
times as calculated in the Robot Output Generator Module.
Therefore, every time the robot performs a word, it waits for
the user to perform as well, then evaluates the user’s response,
and repeats the training by reacting emotionally with the user.
This process is repeated as many times as relative to the user’s
level and the word’s level. This loop is then completed and the
next modules perform their operations.

2.3.6 Initial Conditions

Now that the adaptive teaching system has been clearly ex-
plained, it is good practice to address what initial conditions
affect the system’s behavior. There are several initial condi-
tions that need to be determined before the system can run.
The first and maybe the most important initial conditions are
in the Word/User score calculation module, where these mod-
ules have to assign a score to the user/word based on their
average performance parameters. This is done by performing
a polynomial data-fitting and interpolation on a set of limited

data points that are set once by a human user. For example, a
human teacher has determined that an average repeat number
of α, an average accuracy of β, and average speed of γ gives a
score of s. Changing this initial data will change the whole
performance of the adaptive system significantly.

There is also an initial condition in the word selector mod-
ule that determines how often the robot urges a repeat of the
words failed by the user. This initial condition is actually the
set of probability weights assigned to the failed/passed words.

Lastly, there are initial conditions in the Robot Output
Generator Module that determine the shape and the location
of fuzzy membership functions and the format of the fuzzy
rule base. While linear membership functions are used, other
functions such as Gaussian functions can be implemented, and
the parameters of these functions can also be modified as
initial conditions. In the fuzzy rule base, the fuzzy output of
different sets of fuzzy inputs can also change. For example,
the fuzzy emotional reaction of the robot can be set differently
as shown in Fig. 6.

2.3.7 Computational Burden

The computational burden of the algorithm takes place mainly
at the Robot Output Generator Module and the Sign

Fig. 5 The fuzzy rules related to the speed and the number of repetition outputs

Fig. 6 The fuzzy rules related to the robot’s emotional reaction when user fails/passes
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Recognition Module. Only simple R/W and mathematical op-
erations are conducted in the other modules. In the output
generator, only at the first run, an optimization process occurs
to initialize the fitting equation of the Score Calculation
Modules. Then, simple linear arithmetic operations are needed
in the fuzzy database and rule base to calculate the output. In
the Sign Recognition Module, the deep neural net is pre-
trained. Therefore, the only computational cost happens when
the new data is fed to the deep neural network to generate the
output. Since no training is needed when new data arrives,
there is no heavy computational burden at this stage, making
it appropriate for real-time applications.

2.4 Implementing on RASA

To complete the last block of the adaptive teaching architec-
ture, we expect that the robot will respond appropriately after
receiving input signals from the system. The architecture
sends different variables to the robot, each of which triggers
a specific function in the robot. These variables are:

1) The word that the robot should perform: referring to its
list of learned vocabulary, the robot finds the spatial co-
ordinates of its arms, and commands the actuators to
move the arms in a certain path.

2) Robot’s performance speed: this rate determines how fast
the motors should work while at the same time maintain-
ing a smooth and acceptable trajectory.

3) The robot’s facial reaction: utilizing this parameter, the
robot makes a sad, neutral, or happy face.

4) The robot’s vocal reaction: it must announce what word is
being taught, encourage the user if he/she performs cor-
rectly, and express sadness if they perform incorrectly.

2.5 Evaluation Scenario and the Participants

In this section, it is necessary to determine what the experiment
conditions are and how the teaching scenario is implemented.
First, an explanation of the criterion for passing or failing at the
words are given. Then, we discuss the experimental setup, how
to evaluate the process using questionnaires and statistical ana-
lyzes, and lastly, the effect of adaptation on teaching quality.

The adaptive architecture determines how many times a
word must be performed for a user. If the number of times
the user repeats the word to get a correct answer is less than or
equal to the number of repetitions assigned to the robot, that
word will be passed; otherwise, it will be rejected.

Two experiments were performed to evaluate the research: In
one, the RASA robot taught a total of 8 human users in person
and stored this training data. In the other, the RASA taught a total
of 48 participants virtually and stored their data. In both experi-
ments, the users were divided into two groups, and each person

was taught for a fixed 10 min. In each experiment, the robot
behavior was nonadaptive for the first group, while for the sec-
ond group, the architecture was implemented and the robot was
adaptive. A total of twenty sign language words exists in the
vocabulary domain of RASA. Group members were randomly
selected to minimize the effects of individual intelligence and
memory on the group average. Roughly half of the total partic-
ipants had robotic knowledge, while the other half did not. There
was an approximately equal gender balance, and the age range
was from twenty to fifty. As the robot became more experienced
after each training session and corrected its view of the words, it
was expected that the training of the adaptive group would be
more effective than the nonadaptive one. In other words, since in
each teaching session, the robot’s inner adaptive parameters are
regulated, it learns how to teach the following users more effec-
tively. Hence, when faced with the second group, the robot was
smarter and better able to adapt to them as well as the teaching
content; therefore, the robot’s ability to adapt can be assessed by
comparing the two groups. Different items of a standard ques-
tionnaire filled in by the two groups of participants were com-
pared to assess the effects of the adaptation. Several parameters
were used to compare the effectiveness of the training process in
the two groups.

For the first parameter, we considered the average number of
the group’s failed words in the first experiment. As a hypothesis
in our HRI test, we expected that by implementing the proposed
adaptive teaching, the participants who were trained in the adap-
tive group should be able to pass significantly more words be-
cause the robot knows how many times and how fast each word
should be performed for them. In addition to assessing the effec-
tiveness of the training in terms of the failed words, another
assessment was also done by examining various items on stan-
dard questionnaires. After the training, the participants filled out
the questionnaire in which, in addition to the effectiveness of the
training, the quality of their interaction with the robot was also
measured. By comparing the mean of the different items of the
questionnaire for the two different groups in both experiments,
we can examine the effect of adaptive training in different cog-
nitive aspects and achieve useful results in the context of the
human-robot interaction.

Various studies on socio-cognitive robots have provided
questionnaires to assess a robot’s acceptability [35].Models have
also been developed to evaluate various aspects of human-robot
interaction; one of the most well-known is the Unified Theory of
Acceptance and Use of Technology (UTAUT) [36]. After
reviewing and studying the research and questionnaire done in
[37], we decided to use a Persian translation of the UTAUT
questionnaire to evaluate our work’s acceptability. In addition
to the standard items, the adaptability of the robot, and its effect
on the user were also incorporated into the questions. Each par-
ticipant used a 5-point Likert scale to respond to the questions.
The questions for each item were in accordance with the
UTAUT, with a few changes so that they can be used in this
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research. This questionnaire was based on the UTAUT since it
integrates qualities of several leading technology acceptances,
such as: Theory of Reasoned Action (TRA), Technology
Acceptance Model (TAM), Theory of Planned Behavior
(TPB), Combined TAM and TPB (C-TAM-TPB), Innovation
Diffusion Theory (IDT), and Social Cognitive Theory (SCT).
The items investigated in the UTAUT standard questionnaire
are shown in Table 15. The questions used in this research are
presented in Table 16.

Users gave a score of 1 to 5 to each of the above questions
(i.e., 1: I totally disagree, 2: I disagree, 3: I neither agree nor
disagree, 4: I agree, and 5: I totally agree). In each item, in
addition to the overall conclusions on the statistical popula-
tion, the training groups were compared, and then a statistical
analysis of the T-test was performed on the results. Because
the number of participants in the first study is not sufficient to
draw general conclusions, in addition to the T-test, the
Cohen’s d effect size was also calculated for each item. In this
way, and with this training scenario, the robot’s ability to
adapt was tested and preliminarily evaluated.

Two experiments were conducted to evaluate the effects of
the proposed methodology. In the first experiment, a total of
eight participants were taught by the robot in-person. It should
be noted that due to the relatively small statistical population,
the results of this experiment are used only to evaluate the
performance of the implemented algorithm in the previous
sections. These results are only for a preliminary exploratory
assessment of the proposed algorithm, and to create a field of
questions for more detailed clinical studies in larger indepen-
dent statistical studies with the in-person target population.
However, since the teaching in this experiment is performed
in-person, the results can be useful to examine the real effects
of the teaching, as the participants can interact with the robot
in a real environment. Figure 7 shows a snapshot of the

performed HRI setup, including a user wearing a sensory
glove placed in front of the robot. The supervisor initiates
and supervises the teaching process.

In the second experiment, a total of 48 participants were
taught by the robot virtually. Due to a sufficiently large number
of participants in the second experiment, the results of this ex-
periment are of higher statistical validity. The participants were
shown a video of the robot doing the teaching process, adaptive
for half of the population and nonadaptive for the rest in separate
videos. The videos are recorded in a first-person view, similar to
sitting in front of the robot and interacting with it, to give the
maximum sense of the robot teaching process to the users.
Figure 8 shows the second experiment setup used in the assess-
ment phase of the project. In the video, the robot performs several
ISL signs, and the person viewing RASA performs accordingly,
sometimes wrong and sometimes correctly, and watches the ro-
bot’s reaction. We have tried our best to keep the similarities to
the in-person experience as high as possible.

While the virtual experiment and assessment tried to be as
close as possible to an in-person experiment, there is always a
difference between having a real-world and virtual experience
with a robot. Therefore, the results of both experiments are re-
ported as complementary results of the assessment phase of this
work, each having its particular advantages/disadvantages.

3 Results and Discussions

3.1 Experiment 1: Quality of the Teaching Based on
the Training Data

We first compared the two groups of the users in terms of the
number of failed words in the teaching process. This measure
demonstrates how cleverly the robot is able to assess and

Fig. 7 The experimental setup of the first experiment
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adapt the level of difficulty in its future training sessions. A
summary of the statistical analyzes used for the comparison is
shown in Table 1. According to the table, although the average
of the second group is less than the first group (i.e., the users in
the second group failed on average in fewer words), the p
value is above 5%. The magnitude of the Cohen’s d effect
size is reported to be the large value of 1.03 over eight obser-
vations, indicating that the difference in the two averages is
meaningful and the effects of adaptation in the training ses-
sions are significant. In other words, with the adaptability of
the training, the robot was able to identify which sessions it
should teach less harshly and which ones more. In future re-
search, this result can be studied and evaluated on more users.

3.2 UTAUT Results: Both Experiments

A summary of the statistical results of the questionnaire items
for the first and the second experiment is given in Tables 2 and
3, respectively. In both tables, items with significant differ-
ences between the two groups (i.e., p values<0.05 or close to
0.05) are marked in green. As seen, 4 out of the 12 items for
the first experiment, and 9 out of 12 items for the second
experiment, show significant differences between the two
groups. More details of these items are presented in the fol-
lowing subsections.

By comparing the two tables, we can observe that two
items in both experiments show a significant difference when
we apply the adaptive architecture to the robot. The most
important item of the questionnaire in the scope of this study,
Perceived Adaptability (PAD), is significantly larger for the
second group. This shows that the users could successfully
observe the adaptive behavior of RASA, and the proposed
methodology of this work has been able to make the teaching
program of RASA adaptive. The other item is Anxiety

(ANX), again larger for the second group, which will be ex-
plained in further detail in the following section.

3.2.1 Anxiety (ANX)

The anxiety of the users is one of the criteria that shows the
importance of research on teaching to users. Tables 4 and 5
show the results of this item for the first experiment and sec-
ond experiment, respectively. In both, the mean of the second
group is significantly higher than the first group, and the null
hypothesis is rejected. This is one of the more interesting
results of this research and shows that the second group of
users experienced more average anxiety during the adaptive
teaching by the robot. This greater anxiety may have been
caused by a greater fear of making mistakes during the teach-
ing. We speculated that since RASA had gained teaching ex-
periences for the second group, and its parameters were well
regulated, and the training process was more effective, users

Fig. 8 The experimental setup of
the second experiment

Table 1 The Statistical Analysis Related to the Users’ Number of
Failed Words in the first experiment

1st group 2nd group

1st user 6 3

2nd user 5 4

3rd user 3 3

4th user 3 2

Mean 4.25 3

variance 2.25 0.67

number of observations 8

P(T<=t) one-tail 0.1

P(T<=t) two-tail 0.2

Cohen’s d −1.03
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felt more pressure in the robotic training. Their point of view
toward the process became more serious, making them pay
more attention to the answer they give to the robot, and this
increased their anxiety.

3.2.2 Perceived Adaptiveness (PAD)

This item is the primary focus of this research, and its results
are vital to evaluate the methodology of our study. This item is
used to measure how effective the implemented adaptive
teaching system has been in this study and to what extent this
adaptability was felt by the users. The results of the statistical
analysis related to this section are presented in Tables 6 and 7
for the first and the second experiments, respectively.
According to the tables, the mean of the second group is sig-
nificantly larger than the first group, and the null hypothesis is
rejected. This means that the more the robot learns and adapts
its output parameters to the users and the words, the more the

users feel this adaptation, and in practice, the robot was able to
better adapt itself over time. In fact, the robot knew the com-
bination of the following occurrences better for the second
group: a) which words were harder and which were easier,
b) how fast and how many times each of them should be
performed, and also c) how it could better express its emo-
tional response, and the results indicate that this was felt by the
users. Therefore, we conclude that the methodology used in
this research can be a suitable practical solution for adapting
the teaching program of social robots. This is in line with the
results of [16], where a robot’s adaptability is reported to
enhance the individual’s perception of the system’s
understanding.

3.3 UTAUT Results: First Experiment

In this section, we will go through the other items that showed
a significant difference between the two groups in the first

Table 2 A Summary of the Statistical Analysis of the Items of the Questionnaire for the First Experiment

Item Group 1
mean (var)

Group 2
mean (var)

P Value two-tails Cohen’s
d effect size

Number of
observations

ANX 1.94 (1.00) 2.75 (1.13) 0.03 0.79 32

ATT 3.58 (1.17) 3.92 (0.99) 0.44 0.32 24

FC 3.5 (0.57) 3.63 (1.13) 0.79 0.14 16

ITU 3 (0.57) 3.25 (0.92) 0.70 0.28 8

PAD 3.5 (1.00) 4.1 (0.52) 0.04 0.69 40

PENJ 3.94 (0.33) 4.13 (0.52) 0.42 0.29 32

PEOU 3.25 (0.50) 3.5 (1.43) 0.62 0.25 16

PS 2.38 (1.41) 2.25 (1.36) 0.83 0.11 16

PU 3.63 (0.27) 4.25 (0.50) 0.06 1.01 16

SI 3.5 (0.33) 4 (0.67) 0.36 0.71 8

SP 2.67 (0.97) 1.67 (0.42) 0.01 1.42 24

TRUST 3.63 (1.13) 3.63 (1.41) 1.00 0 16

Table 3 A Summary of the Statistical Analysis of the Items of the Questionnaire for the Second Experiment

Item Group 1 mean (var) Group 2 mean (var) P Value two-tails Cohen’s d effect size Number of observations

ANX 1.94 (1.18) 2.28 (1.28) 0.03 0.31 192

ATT 3.10 (1.28) 3.53 (1.35) 0.03 0.38 144

FC 2.62 (1.00) 3.50 (0.94) < 0.01 0.89 96

ITU 3.00 (1.04) 3.29 (1.26) 0.35 0.27 48

PAD 3.06 (0.66) 3.73 (0.62) <0.01 0.83 240

PENJ 3.49 (1.35) 3.89 (1.00) 0.01 0.36 192

PEOU 2.50 (0.85) 3.46 (1.27) <0.01 0.93 96

PS 2.15 (1.02) 2.58 (0.84) 0.03 0.45 96

PU 3.81 (0.79) 3.90 (0.95) 0.66 0.09 96

SI 3.38 (0.85) 3.92 (0.60) 0.03 0.64 48

SP 2.24 (0.97) 2.35 (1.22) 0.52 0.11 144

TRUST 2.94 (1.38) 3.63 (1.22) < 0.01 0.60 96
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experiment. One important item to be evaluated in this exper-
iment is the perceived usefulness. In other words, how useful
the robot’s adaptive teaching is for users. The results of the
statistical analyzes performed on this item are given in
Table 8. According to the table, the mean of the second group
in this item is marginally significantly larger than the first
group (with a p value of 6% and an effect size of 1.01 on a
total of 16 observations), and the null hypothesis is again very
close to being rejected. As expected, as the robot’s behavior
becomes more adaptive and its outputs more consistent with
the user and the teaching content, users also had more positive
feedback on the usefulness of robotics training. Therefore, it

can be concluded that the more adaptive the behavior of a
teaching assistant robot, the more useful the robotic training
is from the users’ point of view. This result is in line with [14,
15], where adaptability is perceived to increase the usefulness
of the tutoring system by keeping the child users engaged for a
longer period of time. Moreover, in accordance with [14, 15],
as both studies we concluded that users perceive artificial
tutoring systems as advantageous.

One of the results obtained in the first experiment is related
to an item of Social Presence from the questionnaire. The
results of the statistical analysis on this item are given in
Table 9. Contrary to expectations, the mean of the second

Table 4 The Statistical Analysis Related to the Anxiety Item for the
first experiment

t-Test: Two-Sample Assuming Unequal Variances

Group 1 Group 2

Mean 1.94 2.75

Variance 1.00 1.13

Observations 16 16

Hypothesized Mean Difference 0

df 30.00

t Stat −2.23
P(T<=t) one-tail 0.02

t Critical one-tail 1.70

P(T<=t) two-tail 0.03

t Critical two-tail 2.04

Total Observations 32

Cohen’s d 0.79

Table 5 The Statistical Analysis Related to the Anxiety Item for the
second experiment

t-Test: Two-Sample Assuming Unequal Variances

Group 1 Group 2

Mean 1.94 2.28

Variance 1.18 1.28

Observations 96 96

Hypothesized Mean Difference 0

df 190

t Stat −2.15
P(T<=t) one-tail 0.02

t Critical one- tail 1.66

P(T<=t) two-tail 0.03

t Critical two-tail 1.97

Total Observations 192

Cohen’s d 0.31

Table 6 The Statistical Analysis Related to the Perceived Adaptiveness
for the first experiment

t-Test: Two-Sample Assuming Unequal Variances

Groupe 1 Groupe 2

Mean 3.50 4.10

Variance 1.00 0.52

Observations 20 20

Hypothesized Mean Difference 0

df 34.00

t Stat −2.18
P (T<=t) one-tail 0.02

t Critical one-tail 1.69

P (T<=t) two-tail 0.04

t Critical two-tail 2.03

Total Observations 40

Cohen’s d 0.69

Table 7 The Statistical Analysis Related to the Perceived Adaptiveness
for the second experiment

t-Test: Two- Sample Assuming Unequal Variances

Group 1 Group 2

Mean 3.06 3.73

Variance 0.66 0.62

Observations 120 120

Hypothesized Mean Difference 0

df 238

t Stat −6.45
P(T<=t) one-tail 3.08E-10

t Critical one-tail 1.65

P(T<=t) two-tail 6.16E-10

t Critical two-tail 1.97

Total Observations 24

Cohen’s d 0.84
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group is significantly smaller than the first group (p value of
1% and an effect size of 1.2 on 24 observations), rejecting the
null hypothesis, which means that the second group felt less
that RASA is a real being with real feelings. We suppose that
this could be due to the robot’s behavior becoming more
adaptive, and as the users become more involved in the train-
ing process, they monitored the robot’s teaching more care-
fully. Questioning the nature of the robot more than the first
group could lead the second group to greater interest and focus
on the robot’s feelings and behavior, drawing attention to the
fact they are not be dealing with a real being. This conjecture
could form the basis for an important study in the field of
social robotics, this time with more observations and clinical
trials to determine its soundness.

3.4 UTAUT Results: Second Experiment

In this section, we will go through all the other items that
showed a significant difference between the two groups in
the second experiment, but not the first. In the second exper-
iment, 7 out of 12 UTAUT items showed a significant differ-
ence between the two groups of participants but showed no
significant difference in the first experiment. This is highly
likely due to the fact that the number of participants in the
second experiment is six times the first, revealing a higher
statistical validity.

The participants of the second group showed a significantly
more positive attitude toward robotic teaching (ATT), with a p
value of 0.03 (Table 10). This indicates that adapting the ro-
bot’s teaching program to the users results in an improvement
in the attitude toward the use of robots at teachers. Also, the
participants of the second group showed that it would be eas-
ier for them to use robotic teaching (FC) when the robot be-
haves adaptively. This difference is obtained with a p value
smaller than 1% (Table 11). This shows the same trend as the
PEOU item, meaning that the users in the second group think
that the ease of use for the adaptive RASA is higher than non-
adaptive RASA (with a p value below 1% and a Cohen’s d
effect size of 0.93). It is also worth noting that the SI item for
the second group is also larger (with a p value of 0.03 and a
Cohen’s d effect size of 0.64), indicating that the second group
participants have, on average, a higher opinion of the future of
robotic teaching on their lives. These results are also in-line
with the findings of [37], where statistical analysis on different
UTAUT items is performed to assess the effects of more and
less adaptive versions of an assistive social agent.

The users in the second group showed significantly more
interest in the robotic teaching by having larger perceived joy

Table 8 The Statistical Analysis Related to the Perceived Usefulness

t-Test: Two- Sample Assuming Unequal Variances

Groupe 1 Groupe 2

Mean 3.63 4.25

Variance 0.27 0.50

Observations 8 8

Hypothesized Mean Difference 0

df 13.00

t Stat −2.02
P(T<=t) one-tail 0.03

t Critical one-tail 1.77

P(T<=t) two-tail 0.06

t Critical two-tail 2.16

Total Observations 16

Cohen’s d 1.01

Table 9 The Statistical Analysis Related to the Social Presence Item

t-Test: Two- Sample Assuming Unequal Variances

Groupe 1 Groupe 2

Mean 2.67 1.67

Variance 0.97 0.42

Observations 12 12

Hypothesized Mean Difference 0

df 19.00

t Stat 2.93

P(T<=t) one-tail 0.00

t Critical one-tail 1.73

P(T<=t) two-tail 0.01

t Critical two-tail 2.09

Total Observations 24

Cohen’s d −1.20

Table 10 The Statistical Analysis Related to the ATT Item

t-Test: Two- Sample Assuming Unequal Variances

Group 1 Group 2

Mean 3.1 3.53

Variance 1.28 1.35

Observations 72 72

Hypothesized Mean Difference 0

df 142

t Stat −2.26
P(T<=t) one-tail 0.01

t Critical one-tail 1.66

P(T<=t) two-tail 0.03

t Critical two-tail 1.98

Total Observations 144

Cohen’s d 0.38
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score than the first group. We speculate that this rise in the
users’ joy (PENJ) is due to the adaptive behavior of the robot,
which allows the users to better interact with the robot’s dy-
namic facial expressions and physical representation. The sta-
tistical results are shown in Table 12.

Furthermore, the participants of the second group per-
ceived the robot’s ability to perform social behavior (PS) as
significantly higher. The related statistical analysis is shown in
Table 13.We speculate that the meaningful emotional valence
variations during teaching for the second group are responsi-
ble for this result.

Lastly, the users in the second group scored significantly
higher in their trust in RASA and the robotic teaching. The
statistical results are shown in Table 14. Our interpretation is

that when the behavior and the teaching program of the robot
are adaptive, the users more often think that the robot knows
what it is doing, and since the teaching it provides better suits
them, it leads to havingmore trust and confidence in the robot.

4 Limitations & Future Work

In addition to examining the effectiveness of the mechanism
used in this research, the results of this study are reported as
preliminary exploratory findings to create the basis and con-
text of a future research question in the field of social robotics.
Moreover, the correctness of these hypotheses should be test-
ed through statistical analysis on a larger target community
determined by clinical training in an independent study.

Several technical limitations and difficulties arise while
applying this methodology in a real-world scenario. The
data-capturing system or the sensory glove can be counted
as the first limitation because it is not easy to initialize and
use for users during long interactions. Secondly, the start/
finish point of the user’s performance is determined and fed
to the system by a human supervisor, which does not allow the
system to run entirely automatically. This is also responsible
for some of the Sign Recognition Module faults, meaning the
robot may fail a user after a correct performance. Finally, since
the fuzzy membership functions are chosen to be linear for the
sake of teaching feasibility in real-time scenarios, the robot’s
initial judgments are too “sharp”, meaning the changes in
robot’s teaching behavior in the initial teaching sessions are
too drastic. This problem is resolved after a few teaching ses-
sions when the robot has gathered enough data to change its
output parameters in a logical manner.

Table 11 The Statistical Analysis Related to the FC Item

t-Test: Two- Sample Assuming Unequal Variances

Group 1 Group 2

Mean 2.62 3.5

Variance 1 0.94

Observations 48 48

Hypothesized Mean Difference 0

df 94

t Stat −4.35
P(T<=t) one-tail 1.72E-05

t Critical one-tail 1.66

P(T<=t) two-tail 3.44E-05

t Critical two-tail 1.99

Total Observations 96

Cohen’s d 0.89

Table 12 The Statistical Analysis Related to the PENJ Item

t-Test: Two- Sample Assuming Unequal Variances

Group 1 Group 2

Mean 3.49 3.89

Variance 1.35 1

Observations 96 96

Hypothesized Mean Difference 0

df 186

t Stat −2.53
P(T<=t) one-tail 0.01

t Critical one-tail 1.65

P(T<=t) two-tail 0.01

t Critical two-tail 1.97

Total Observations 192

Cohen’s d 0.36

Table 13 The Statistical Analysis Related to the PS Item

t-Test: Two- Sample Assuming Unequal Variances

Group 1 Group 2

Mean 2.15 2.58

Variance 1.02 0.84

Observations 48 48

Hypothesized Mean Difference 0

df 93

t Stat −2.22
P(T<=t) one-tail 0.01

t Critical one-tail 1.66

P(T<=t) two-tail 0.03

t Critical two-tail 1.99

Total Observations 96

Cohen’s d 0.45
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The parameters of the fuzzy membership functions are
not tuned during the training session; It is the user’s and
the word’s parameters that are changed after any training
session, which changes the user’s/word’s score accord-
ingly and thus their position inside the membership func-
tions. Therefore, the adaptation is performed by changing
the position of the user/word inside their respective fixed
membership functions. For future studies, the authors
would suggest implementing an algorithm that modifies
the shape of the membership functions while simulta-
neously changing the scores of the users and the words,
and then compare the system’s efficiency with this study.
The authors would also suggest expanding the vocabu-
lary domain of the robot and teaching individuals on a
broader set of words for more comprehensive teaching
scenarios.

5 Modeling Errors and Uncertainties

In this research, the term “adaptive” is used to signify that the
robot’s teaching parameters are changed with respect to the
performance of the users during training sessions. The adap-
tation process is conducted using a fuzzy algorithm that takes
the user’s and the word’s parameters as an input and generates
the output by fuzzy rule base and fuzzy database. Therefore,
the “learning” module of the algorithm works with the input
data that are extracted from users/words profiles, that contain
average accuracy, average speed, and average repeat time for
each. The average repeat time and the average speed of per-
formance are data that are immune to noises, since they can be
easily counted/measured by the robot. The average accuracy is
calculated by the deep neural network in the Sign Recognition
Module, and it reports the accuracy based on the human su-
pervisor’s time framing and the sensory data coming from the
data-capturing glove. Although deep neural networks have
shown to be more robust against a certain amount of noises
compared to other regression/classification methods, there are
noises in the sensory data of the glove and uncertainties in the
human supervisor time framing or robot’s motor function data
that might either misdirect the user to perform the incorrect
word, or lead to wrong classification by the network; In this
case, the robot’s judgment of the user would be wrong and
consequently the parameters of the particular word and user
would be adjusted incorrectly, leading to inefficient teaching
parameters for the next teaching sessions. This case is rare
however, and since for every training session the robot con-
siders the whole training history of the user and the word and
adjust its parameters on the entire data, a small number of
faulty adjustments does not affect the teaching process signif-
icantly. Therefore, modeling these small uncertainties in our
adaptive teaching algorithm would not be either efficient or
necessary, and it is not the focus of this research.

Table 14 The Statistical Analysis Related to the TRUST Item

t-Test: Two- Sample Assuming Unequal Variances

Group 1 Group 2

Mean 2.94 3.63

Variance 1.38 1.22

Observations 48 48

Hypothesized Mean Difference 0

df 94

t Stat −2.96
P(T<=t) one-tail 197E-03

t Critical one-tail 1.66

P(T<=t) two-tail 3.94E-03

t Critical two-tail 1.99

Total Observations 96

Cohen’s d 0.6

Table 15 Items investigated in
the standard UTAUT
questionnaire

Evoking anxious or emotional reactions when it comes to using the system ANX

Positive or negative feelings about towards the appliance of the technology ATT

Factors in the environment that facilitate use of the system FC

The intention to use the system over a longer period in time ITU

The perceived ability of the system to adapt to the needs of the user PAD

The perceived feelings of joy/pleasure associated with the use of the system PEN J

The degree to which one believes that using the system would be free of effort PEOU

The perceived ability of the system to perform sociable behavior PS

The degree to which a person believes that the system would be assistive PU

The persons perception that people who are important to him think he should
or should not use the system

SI

The experience of sensing a social entity when interacting with the system SP

The belief that the system performs with personal integrity and reliability TRUST
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6 Conclusion

Using social robots as a sign language teaching assistant
can be an important step in expanding communication with
the deaf in the future. The literature shows that user inter-
faces with adaptive behavior lead to greater user accep-
tance and increased teaching efficiency compared to non-
adaptive ones. This project aims to empower the RASA
social robot for adaptive teaching of Iranian Sign
Language to users, which first requires the robot’s logic
to be adjusted toward the teaching content in the next train-
ing sessions, and secondly, adapt its methods to intelligent-
ly teach based on the users past and present performance.
By designing and implementing an architecture to produce
adaptive parameters appropriate to both the user and the
content of the training, and then have the robot perform
sign language words according to these parameters, we
were able to enable the robot to adaptively teach Iranian
Sign Language in a manner somewhat similar to a human
teacher. After the general mechanism of the architecture
was explained, each of the modules that make up this ar-
chitecture was discussed, and their performance was
explained.

In two separate experiments, users (8 in-person and 48
virtually) with different levels of familiarity with robotics

and Iranian Sign Language were recruited and divided into
two groups. Each user was taught for ten minutes. In the first
experiment, the users wore robotic data-collection gloves in
front of the robot, and their training process was monitored by
a supervisor. In the second experiment, the users were shown
a first-person view video of the robot performing SL teaching,
adaptive and nonadaptive. In both experiments, the adaptive
teaching architecture was applied only for the second group.
Thus, the effect of the adaptive teaching was measured by
comparing the average parameters of users in the two groups
in terms of the number the words they failed and also with
various items from the standard questionnaire UTAUT from
the social robotics field. Utilizing the results of this question-
naire, the statistical analysis of the T-test and the Cohen’s d
effect size were performed to compare the mean of the two
groups in different items. Initially, it was found that the second
group of users failed significantly fewer words than the first
group, which shows that adapting the robot causes it to teach
more intelligently and effectively, as well as how the robot
was able to adjust the teaching parameters toward different
users.

Two of the 12 UTAUT items showed significant differ-
ences between the two groups in both experiments, accord-
ing to the T-test results and effect size tests. One of these
items is anxiety, which indicates that the second group felt

Table 16 The questions in our proposed UTAUT-based questionnaire

I find the robotic teaching
intimidating

I find the robot scary During the training, i
would be afraid to
break something

During the training, I would
be afraid to make a mistake

ANX

During the training, I felt
that I’m really learning
something

I don’t think robots can
teach like humans

I think that robot teaching is a
good idea

ATT

I know enough to make
use of robot teaching

I have everything I need to use
robotic teaching

FC

In future, I will use rob
ots as teachers

ITU

I felt that the robot knew
which words are easy
or hard

I felt that the robot knew in
which words I’m weak
or strong

I think the robots gain
experience and teaches
better over time

I think the robot better
adapts to me over time

I think the robot is adaptive
to me

PAD

I enjoyed the adaptation of
the robot

I find robotic teaching
fascinating

I enjoy interacting with
robots

I enjoy robotic Teaching PENJ

I know quickly how to
use robotic teaching

I find robotic teaching easy PEOU

I find the robot a pleasant
social partner

I think the robot understands
me

PS

I think it would be
convenient to use
robots as teachers

I find robotic teaching useful PU

It would give a good time
impression if I would use
robotic teaching

SI

Sometimes the robot seems
to have real feelings

I can imagine the robot to
be a living creature

When interacting with robot I
felt like it’s a real person

SP

I would follow the advice
the robot gives me

I would trust robotic teaching TRUST
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moderately more anxious than the first group. Moreover,
the second group felt the robot’s adaptability more than the
first group (both groups believed that the robot’s teaching
was adaptive), which could indicate that the methodology
used in this study was effective and that the robot’s com-
patibility was felt by users. As previously explained in the
results section, two other items in the first experiment (PU
and SP) and seven other items in the second experiment
(ATT, FC, PEOU, PENJ, PS, SI, and TRUST) showed a
significant difference between the two groups. The general
mechanism of this methodology is also transferable to oth-
er social robots and other teaching scenarios, as no specific
characteristics of RASA or Iranian Sign Language were
engaged in the architecture [38–40].
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