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Abstract
Deficit in imitation skills is one of the core symptoms of childrenwithAutism SpectrumDisorder (ASD). In this study, we have
tried to look closer at the body gesture imitation performance of 20 participants with autism, i.e. ASD group, and 20 typically
developing subjects, i.e. TD group, in a set of robot-child and human-child gross imitation tasks. The results of manual scoring
by two specialists indicated that while the TD group showed a significantly better imitation performance than the ASD group
during the tasks, both ASD and TD groups performed better in the human-child mode than the robot-child mode in our
experimental setup. Next, to introduce an automated imitation assessment system, we present different mathematical models
of the children’s imitation performance using some State-Image based algorithms including Acceptable Bound, Mahalanobis
Distance, and Signals’ Cross-Correlations as well as Hidden Markov Models based on the time-dependent kinematics data of
the participants’ joints. Among the different studied models, we observed that the “State-Image Acceptable Bound method
with position, velocity, and acceleration features” is the best one. This method has a mean Pearson correlation of ~45%,
which is fairly comparable to the related works (out of autism field) in assessing the quality of dynamic actions. Finally, for a
treatment application of using artificial intelligence algorithms in automated evaluation of children’s behaviors as an unbiased
and quantifiable measurement in HRI, we propose a reciprocal gross imitation human–robot interaction platform with the
potential to aid in the cognitive rehabilitation of children with autism.

Keywords Imitation · Social robots · Autism Spectrum Disorder · Hidden Markov model · Automated assessment ·
Human–robot-interaction

1 Introduction

Impaired imitation and motor skills are among the skills that
are considered as core symptoms in children with autism
spectrum disorder (ASD) [1, 2]. These impairments have
been studied comprehensively by researchers in the autism
area [1–5]. As mentioned in the literature, the comprehen-
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sive Reciprocal Imitation Training (RIT) programs and its
principles and basic factors, such as being face-to-face with
patients, imitating movements of the body, sounds, and pos-
tures, how to work with dolls and toys, and imagination and
pretended play and symbolic games, affect not only on the
imitation skills of children with ASD but also can positively
affect individual with autism’s improvement in social and
cognitive skills [3]. Moreover, it could be stated that the fol-
lowing functions of imitation can improve social skills of
children with ASD by (I) Using the movements of body to
develop social interaction and reciprocity with others in soci-
ety [4], and (II) Empowering the patient to be aware of his
or her interlocutor’s activities and also intentions which can
potentially lead to social learning [5].

In addition, in the last 15 years it has been widely shown
that conducting robot-assisted interventions as assistant tools
in autism clinical sessions can significantly improve the
impact of the rehabilitation process such as imitation skills
of individuals with autism [1, 2, 6–10]. From the early days

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



1126 International Journal of Social Robotics (2021) 13:1125–1147

of applying this technology in the autism area, the hypothe-
sis that “children with autism performed significantly better
in robot-child mode than the human-child mode (e.g. in
imitation tasks) in the intervention sessions” arose among
researchers (mostly engineers) and has been widely argued
and summarized in related review papers in this area [1, 6,
7, 10–12]. Studying this hypothesis has been a motive for
further research on social robots as assistant tools in this
field during the last years [13]. In this study, we report our
observations regarding the confirmation or rejection of this
hypothesis in the pre-set imitation tasks in our clinical exper-
imental setup. While most published studies have reported
a qualitative or descriptive assessment of autistic subjects
imitation performance during robot-assisted games or have
analyzed imitation games as some sort of classification or
clustering problem [1, 12, 14, 15], this paper investigates the
kinematics of children with ASD in imitation tasks to assess
their quality of actions and undertakes a mathematical com-
parison with their TD peers in order to fill a serious gap in
the literature. In fact, the use of unbiased and quantifiable
measurement in HRI is important to advance the field of
Socially Assistive Robotics (SAR) and the support for chil-
drenwithASD.Ali et al. [16] proposed amathematicalmodel
based on the adaptive multi-robot treatment of children with
autism called MRIS, focusing on joint attention (JA) and
imitation. The authors used a Kinect sensor to evaluate the
success rate of the imitation actions. They mainly focused
on their proposed cognitive architecture’s strategies for scor-
ing JA and tasks’ adaptation with the participants’ imitation
performance scored as 0 or 1 in each experiment, but the
assessment of the imitation tasks’ quality was not analyzed
systematically based on all the participants’ joints’ kinemat-
ics. Aly [17] used image processing techniques amplitude,
such as normalized histogram intersections throughout the
video frames or producing the characteristic vector includ-
ing the center of gravity, mean absolute deviation of a pixel,
etc. tomeasure gestures of small and large in dynamic gesture
recognition for application in autism therapy. However, this
study also reported its results as a classification problem. In
another study, Fujimoto et al. [18] published techniques for
imitation assessment and evaluating the motion of a human
mediator in real time by their humanoid robot for use in
applications in ASD treatment. The authors used some body
angles as the features as well as the Q-Learning approach as a
method of choosing the key frames for themovements’ signal
de-noising. They proposed a method of a cluster-based Mix-
ture Gaussian framework and an Expectation-Maximization
algorithm using parameters which are converted by Principal
Component Analysis (PCA) to do the clustering of each user
movement in real time. Since their work had the potential for
dynamic assessment of the quality of actions, they used a very
small number of childrenwith autism in their study to validate
their study’s algorithm as well as there is a lack of providing

quantitative data regarding their subjects with ASD. None of
the mentioned studies have compared the kinematics of typi-
cally developing children with those of children with autism,
which is one of the noticeable points of our current study.
While the focus of most studies has been on recognizing the
actions instead of studying the quality of the actions, there are
some noticeable papers in the field of automated assessment
of the quality of dynamic actions (out of the autism area). In
[19], Pirsiavash et al. used algorithms including Space Time
Interest Points (STIP), Hierarchical Network Features, Dis-
crete Fourier Transform (DFT), and Fast Fourier Transform
(FFT) to evaluate the quality of some actions in skating and
diving sports. They reported that after testing all of their dif-
ferent algorithms on the data set, the best calculatemean rank
correlation between the human judges and their automated
scores were 0.41 in diving evaluation (applying the DCT
algorithm) and 0.45 in figure skating evaluation (applying
the Hierarchical algorithm). The authors of [19] mentioned
that they aimed to propose a general method for assessing
the quality of actions and tested their proposed algorithms
on two different sports’ datasets: diving and figure skating.

Two most common methods in assessing the quality of
imitation actions for children with ASD are: first, different
questionnaires filled in by the parents, teachers, etc., and sec-
ond, child psychologists conducting some imitation tasks for
children with skill impairment and usually discretely scor-
ing the subjects’ performance based on their observations
and experiences [1, 2]. This is done to predict the severity of
the children’s deficits as well as to design the next rehabili-
tation tasks for the participants. These kinds of approaches
are known as “clinical methods” [20–22]. Although clinical
methods are commonly used worldwide, their main limita-
tions, which could seriously affect the methods’ reliability,
include thequalitative or descriptive nature of the assessment,
dependence of the results on the evaluator’s personal view-
point, the child’s mental state, and environmental impacts
that should be considered and handled.Moreover, the limited
interval and discrete nature of the scoring reduce the accu-
racy and measurement sensitivity of assessing the quality of
actions; hence, possible small changes in patient performance
might not be detected by the evaluators. Therefore, the seri-
ous issue in using such clinical methods is possible biases
when caregivers fill out surveys. To overcome this problem,
engineers are trying to use the kinematics and dynamics char-
acteristics of the movements alongside artificial intelligence
and control theory to propose quantitative and more gen-
eral criteria, i.e. independent of the evaluators, as modern
Health Outcome Measures for better accuracy and sensitiv-
ity in diagnostic and treatment evaluations. More generally,
in the literature of biomechanics there are some clinicalmeth-
ods used as criteria for assessing actions which consider
the motions’ range, speed, accuracy, smoothness, and used
energy (e.g., for physical rehabilitation of individuals with
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strokes) [20–25]. An overview of such works inspired us to
propose the automated assessment algorithms in this study.
The readers can also find some restrictions and requirements
of the available methods in [22–25].

A popular recent application of artificial intelligence in
studies containing SAR for education and therapy of chil-
dren is focused on the “automated evaluation of behaviors”
and “adaptive teaching”. Engineers would like to empower
the robots andmachines to automatically assess the behaviors
of their audiences and then report back to teachers, human-
mediators, psychologists, and parents. Moreover, they try to
empower the robots to adapt the treatment and teaching pro-
tocols based on both the current status and history of the
users [13, 16, 26]. Achieving these goals will bring us one
step closer to the practical use of social robots in education
and treatment centers and to assist in the study of their impact
on society. In this regard, a robotic platform for reciprocal
gross imitation training is proposed at the end of the paper.

1.1 Research Purposes and Hypothesis

This paper focuses on finding a preliminary exploratory
answer for the following main research question: How dif-
ferent is the performance of children with autism in gross
imitation movements in comparison to typically developing
children? To this end, we recruited 20 children with autism
referred to as the ASD group, and 20 typically developing
children, i.e., the TD group, to participate in different robot-
child and teacher-child body gesture imitation exercises. This
paper is an initial attempt to find the differences within and
between the TD and ASD groups in dynamic imitation tasks.
We divided the mentioned main research question into the
following sub-questions:

1. What are the preliminary estimates of the acceptance
rates of a NAO humanoid robot as a companion in gross
imitation games for TD and ASD groups?

2. Is the imitation performance of the ASD and TD group in
the robot-child mode better than the teacher-child mode?

3. What is the difference between the movements’ kine-
matics of TD and ASD subjects in the imitation tasks
considering agility and performance’s accuracy?

4. How accurate can a robotic system score the imitation
performance of a participant in dynamic tasks?

We are interested to studywhether the two following com-
monhypotheses in the literature are confirmed: hypotheses-I)
“children with autism have a deficit when doing imita-
tion tasks in comparison with their typically developing
peers” and hypotheses-II) “the quality of imitation perfor-
mances of children with autism in robot-assisted imitation
games is higher than their performances in human-based
non-robotic similar tasks”. To this end, the results of manual

assessments of robotic and non-robotic, i.e. robot-assisted
and teacher-assisted, gross imitations are compared. Then,
a set of algorithms, including State-Image based and Hid-
den Markov Model-based assessment algorithms with the
capability of automated scoring during the robot-assisted
imitation actions, is presented and each of the subset’s perfor-
mance on automated assessment is investigated. In addition,
we explored the accuracy of the robot automated assessments
using manual scores provided by two human mediators as
reference scores. We assessed the Pearson correlation rate
of machine scores and human scores via the presented set
of algorithms to see how consistent the machine outputs
are with the equivalent manual scores generated by our two
human coders in the Likert scale of 0 to 4 as the ground truth
scores which is descripted in Sect. 2.5. In order to provide a
fast guideline for readers to easily follow, an overview flow-
chart of this study is presented in Fig. 1. The reader may
ask, “why have the authors tested or proposed different cate-
gories of intelligent algorithms for scoring the performance
of the imitations?” Further clarification is needed to answer
to this question. Just as there is only one way to get 100 out
of 100 in an exam while there are numerous ways to get 75
and even more possible ways to get 0 out of 100; there is
only one correct time-series solution for the “assessment of
action’s quality” which is much more complicated than the
actions’ classification or recognition for each dynamic action
that receives full marks; but, there are an infinite number
of methods to obtain an incomplete task solution. There-
fore, having access to a number of finite incomplete scores
is not necessarily an appropriate tool for applying common
machine learning methods. With this introduction, one can
see that empowering a machine to act like a trained judge
in scoring an action similar to clinical evaluators is a very
interesting and useful problem in artificial intelligence. The
readers can also find other uses and challenges of assessing
the quality of dynamic actions in [19, 27, 28].

Lastly, we have proposed an architecture for a
human–robot interaction platform with the ability of auto-
mated imitation assessment for reciprocal body gesture
imitation training programs. The current research is built on
our previous studies on developing reciprocal human–robot-
interaction platforms for children with autism [13].

2 ResearchMethodology

2.1 Participants

.
Twenty children with autism, including 14 boys and 6 girls
(mean age: 4.95 years, standard deviation: 2.01 years), and
twenty typically developing children, including 10 boys and
10girls (mean age: 5.30years, standard deviation: 1.95years)
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Fig. 1 An overview flow-chart of this study containing the participants, imitation games’ modes, manual assessment, automated assessments
procedures, groups’ comparisons, and algorithms’ evaluation

voluntarily enrolled in this study. The children with autism
were diagnosed by the doctors and psychologists of the Cen-
ter for the Treatment of Autistic Disorders (CTAD) in Iran
and have received someApplied Behavioral Analysis (ABA)
clinical interventions before attending this study.

Regarding the gender ratio in autism prevalence, i.e. about
four males for every one female [1, 6], gaining access to the
same number of girls with autism was quite difficult for us,
andwewere unable to recruit ten girls for this study. It should
be added that in this study, we did not consider any possible
gender differences between the imitation performances of the
recruited participants.

2.2 Humanoid Robot

The robot used in this study is a NAO H-21 commercial
humanoid robot [29]. To help to make a better connection
and further communication with our participants the robot
was given the Iranian male name “Nima”.

2.3 Experimental Setup

The study was conducted in 10×5×3 m3 game room at
the Social and Cognitive Robotics Lab., Sharif University of
Technology, Iran. Two cameras and one Microsoft Kinect2

sensor were used to capture the subjects’ skeletal kinematics
data. A human mediator, a robot operator, each participant,
and his or her parent(s) were also present in the game room.
The children’s tasks were preset and the games session was
structured. The robot was commanded by an operator in a
wizard of Oz style control. During the tasks, a person was
always standing near the robot for taking care of Nima to
avoid any possible falls or for the cases that the participants
tend to touch the robot; however, this personwas not involved
in the imitation tasks at all. It should be noted that formachine
assessment of the participants’ movements, the x, y, and z
positions of each subject’s skeletal joints versus time were
captured in the robot-assisted modes of this study using the
Kinect sensor. The robot operator captured the Kinect’s data
of the subjects from one second before each robot’s action
until the end of participants’ performances. The details of the
used algorithms and obtained results for automated assess-
ments are presented in Sects. 2.6 and 3.2, respectively.

2.4 Designed Imitation Games

A set of body gesture imitation actions were designed to be
conducted in three different modes: (1) Imitation of Nima
by each participant in a dyadic robot-child interaction (mode
A); (2) Imitation of the human-mediator by all subjects in a

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



International Journal of Social Robotics (2021) 13:1125–1147 1129

Fig. 2 Snapshots of one frame in the designedmovements for the robot-
childmode: a task #1:Nimamoves its arms open in the straight positions
in the middle of the action, b task #4: The robot moves the arms cross

each other on the chest and bends both knees, and c task #7: The robot
balances on one leg while bending the torso, the knees, and moving its
both arms

dyadic teacher-child interaction (mode B); and (3) Simulta-
neous imitation of the robot by the child and the parent in a
triadic robot-child-parent interaction (mode C). It should be
noted that after conducting the study, we realized that sim-
ilar to mode B, we could possibly add and conduct a mode
D to our study containing the imitation of teacher by both
child and parent, simultaneously which could enable us to
have a more comprehensive analysis between and within the
child-robot and teacher-child modes.

We designed 10 gross imitation tasks which included a
combination of arms, feet, neck, and torso movements for
each mode and the participants were expected to imitate the
robot or teacher simultaneously. Having a hierarchical trend,
our dynamic tasks started with symmetric, visible, and easy
exercises and got progressively more complicated and asym-
metric as they continued (such as one-leg balance) in each
mode (Fig. 2). All of the actions were intentionally started
from the neutral standing position of the robot or teacher.
The minimum and maximum time length of the movements
were 4 and 15 seconds, respectively. In both groups half of
the participants were randomly chosen to be involved first in
the robot-child interaction (mode A), and then in the teacher-
child interaction (mode B); and vice versa for the second half
of the subjects (i.e. counterbalance condition). Finally, mode
C was conducted for each participant and one of his or her
parents. Short descriptions of what robot does in each task
are presented in Table 1.

2.5 Manual Rating of theMovements

Two video coders manually and independently rated the per-
formance of the participants in all tasks and modes using the
Likert scales 0 (no action done by the child or completely
wrong performance) to 4 (excellent imitation). The average
of their scores were also used as the reference grades for
the robot’s automated imitation assessment. A comparison

between the performances of the ASD and TD groups was
done and is reported in the results section.

2.6 Automated Imitation Assessment

As one of the paper’s contributions, we empower the robotic
system to automatically score the quality of the participants’
gross imitations. As mentioned above, a set of reasonable
and standard algorithms were studied as possibilities for the
robot-assisted automated assessment to see which one pro-
duced the most compatible outputs to the equivalent human
scores based on the Person correlation coefficient. The appro-
priate features and automated assessment algorithms were
chosen so that they could handle the following important
challenges: (1) the dynamics nature of body gesture imita-
tion actions, (2) the possiblemisalignment in the participant’s
starting time and time duration of performing an action, (3)
different subjects’ height and dimensions, and (4) different
initial participant position with respect to the Kinect sensor.
Considering that the robot performs the tasks quite similar
for all the participants, to have more reliable and compara-
ble mathematical models of the ASD and TD groups, we
only considered the robot-assisted modes’ kinematics data
for our automatic assessments. On the other hand, due to any
potential variations in movements’ exact timing and spatial
properties in the teacher performances, the Kinect’s data of
mode B has not been considered for extracting the mathe-
matical models in the automated assessment section in this
study.

To conduct the automated assessment of the subjects’
imitation performance, we have chosen State-Image based
algorithms [30, 31] including the Acceptable Bound, Maha-
lanobis distance, and signals’ cross-correlations aswell as the
Hidden Markov Model (HMM) algorithm combined with a
Gaussian Mixture Model (GMM), which is used as a tool for
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Table 1 Imitation tasks for both robot-child and teacher-child modes

Task no. Descriptions Status of symmetry Main involved components

1 Move hands forward, up, open, and down in the
straight positions

Symmetric Left arm and right arm

2 Move hands up, folding in chest, open, folding on
upper-arm, and down

Symmetric Left arm and right arm

3 Stretch one hand and bend the torso while the other
one is on waist, and next, its mirror symmetry

Asymmetric Left arm, right arm, and torso

4 Move the arms cross each other on the chest and bend
both

Symmetric Left arm, right arm, left knee, and right knee

5 Move one hand up and the other one down while
making right angles between lower-arm and
upper-arm for both arms, as well as the head
movement

Asymmetric Left arm, right arm, and head

6 Bend one knee, bend the torso, and move both hands
cross each other in a pendulum pattern

Asymmetric Left arm, right arm, torso, left foot, and right foot

7 Balance on one leg while bending the torso, the
knees, and moving both arms in an asymmetric
pattern to keep the balancing situation

Asymmetric Left arm, right arm, torso, left foot, and right foot

8 Bend both knees, move the arms and head during a
symmetric dance pattern

Symmetric Left arm, right arm, torso, left foot, right foot, and
head

9 Move the arms, head, and feet during an asymmetric
dance pattern

Asymmetric Left arm, right arm, torso, left foot, right foot, and
head

10 Balance on one leg from the beginning of the
movement, moving the head, and moving both arms
in an asymmetric circular and curved pattern

Asymmetric Left arm, right arm, torso, left foot, right foot, and
head

recognizing sequential patterns [32–34] which are described
in this section.

2.6.1 Skeletal Data and the Kinematics Formulations

The main tool for proposing the automated assessment sys-
tem is extracting body angles as the features from the skeletal
data of the participants using kinematics formulations. To
this end, we used a Microsoft Kinect Sensor, which made
it possible to record the position of the subject’s joints in
each frame, and then the features were calculated using the
appropriate forward kinematics formulations. The x, y, and
z positions of each participant’s skeletal joints versus time
were captured at the rate of 30 frames per second during
the imitation games unless the child moved out of the sen-
sor’s view field which was common because of his or her low
instruction perception,wandering around the room,maladap-
tive behaviors, etc. The Kinect’s data of mode A and mode
C were captured from one second before each robot’s action
until the end of subject’s performance. In order to reduce
the effect of the Kinect’s noise, a 4th order Butterworth filter
with a cutoff frequency of 6Hzwas applied to the data before
calculating the features. The extracted features for machine
assessment are introduced in the next section; however, to
avoid interrupting the paper’s flow, the details on extracting
the kinematics formulations are presented in the Appendix.

One of the main points of the automated assessment section
is that the used method could be considered as a measure
to enable comparison between studies and reduced potential
evaluator biases.

2.6.2 Features

Considering thementioned concerns, in this study (except for
the Mahalonobis distance method which is based on the 20
skeletal joint positions of the subjects), 19 direction invari-
ant angles have been selected and calculated from the skeletal
data as the independent position-based features to describe
the movements. These features are presented in Table 2.
It was assumed that the value and range of these angles is
approximately the same for all subjects, which is not a flaw-
less but acceptable assumption.Using anumerical derivatives
technique, we also calculated and added the velocity and
the acceleration of the angles called the velocity-based and
acceleration-based features to the features’ space alongside
their positions to improve the actions’ automated analysis.
Hence, there was a total of 57 features considering the posi-
tion, velocity, and acceleration, simultaneously. In our study,
the robot was aware of the participants’ action numbers.

We assumed that the upper body of the users has three
degrees of freedom (DOF), including F15, F16, and F17,
which represent the rotation of the body about the three coor-
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Table 2 List of the extracted position-, velocity-, and acceleration-based features for movement analysis in this study: the position features (i.e. the
angles) were calculated from the Kinects skeletal data using the forward kinematics formulations (presented in the Appendix)

Description Position-based features (X) Velocity-based features (V) Acceleration-based features (A)

Right shoulder pitch F1 F20 F39

Right shoulder roll F2 F21 F40

Right elbow pitch F3 F22 F41

Right elbow roll F4 F23 F42

Left shoulder pitch F5 F24 F43

Left shoulder roll F6 F25 F44

Left elbow pitch F7 F26 F45

Left elbow roll F8 F27 F46

Right hip pitch F9 F28 F47

Right hip roll F10 F29 F48

Right knee pitch F11 F30 F49

Left hip pitch F12 F31 F50

Left hip roll F13 F32 F51

Left knee pitch F14 F33 F52

Euler ZXY:θz F15 F34 F53

Euler ZXY:θx F16 F35 F54

Euler ZXY:θ y F17 F36 F55

Head yaw F18 F37 F56

Head pitch F19 F38 F57

The velocity and acceleration-based features were calculated from the position-based features using numerical derivatives techniques

dinate axes. Only the rotation angle about the z-axis (F15)
was considered for the lower body of the subjects. Regardless
of the initial orientation of the subjects toward theKinect sen-
sor, we set the Euler angle of the upper body about the z-axis
(F15) to zero by multiplying appropriate rotation matrices
for all the users in every frames of the actions to omit the
effect of participants’ standing orientations.

The dimensions of the input data for our automated assess-
ment algorithms is T × F where T and F are the number of
frames and features, respectively. Due to a possible differ-
ence in the time duration of each subject’s action, the signals
are first normalized in dimensions; therefore, a pre-setN data
sampling is done on the signals during the whole time dura-
tion of the movement by fitting appropriate spline curves
[32]. In this paper, N=50 points have been extracted from
each signal to build the modified 50 × F input signal for
each captured data. It should be noted that by aligning the
raw participants’ skeletal signals, the information regarding
the velocity and time-rate of the actions vanishes from the
modified input signals, and the “agility” of the real actions
could not be studied as only the positions-based features
are considered as the features’ space. To this end, by cal-
culating the first and second derivative on the position data
with respect to time, i.e. numerical derivative, the velocity-
based and acceleration-based features are also added to the
features’ space. Due to the dynamic nature of the actions,
it was estimated that adding such features could improve

the performance of the assessment algorithms. Therefore,
each presented model was tested three times considering (1)
the position features only, (2) the position and velocity fea-
tures, and (3) the position, velocity, and acceleration features
altogether as the feature space. Moreover, we present a sub-
section in the Results section in which the tasks’ agility of
the ASD and TD groups is compared.

2.6.3 State-Image Method

One of the automated algorithms used in this manuscript is
called the State-Image (SI) method [30, 31]. This technique
codes every state of the data into pixels of a 2-D image and
converts a set of time-series into a single image. Each ele-
ment in the data, i.e. the value of each feature in each frame,
is coded as the brightness of the image pixel ranging from 0
to 255. Using this method, we can convert a dynamic time-
series of movements into a set of static equivalent images,
and then study the produced images based on common avail-
able techniques. By using the State-Image method in this
study, each action signal with the dimension of T × F was
converted to an image with T × F pixels. Just observing
the produced images can also give appropriate information
regarding the subjects’ performance and their probable errors
in the actions.

This section clarifies how the pixels’ values are calculated
and assigned from the input data. To do so, we applied three
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different criteria to produce the images using the State-Image
method as follows. It should be noted that in each criteria,
the mean and standard deviation of the TD subjects’ perfor-
mances with a full score (i.e., 4 out of 4) have been used as
the reference signals for each action.

I, SI-MH)Mahalnobis Distance of each participant’s sig-
nal from the 20 body joints’ positions (Eq. 1) of the reference
signal extracted from the Kinect sensor is used as the criteria
for producing the static black and white image. The formu-
lation for assigning the value to each pixel is presented in
Eq. 2. It should be noted that the distribution of the reference
signals in each frame and feature has been assumed to be
normal; therefore, the n and m parameters in Eq. 2 are set to
2 and 3, respectively.

MahalonobisDistance �
√

(x − μ)T�−1(x − μ) (1)

pixelvalue � 255 ×
⎧
⎨
⎩
1 i f Mahalnobis Distance ≤ n

1
(n−m) × Mahalnobis Distance − m

n−m i f n ≤ MahalnobisDistance ≤ m, n � 2,m � 3
0 i f Mahalnobis Distance ≥ m

(2)

In Eq. 1, x is the vector of the studied observation,μ is the
mean vector of a set of observations, and � is the covariance
matrix of the data.

II, SI-AB) Acceptable Bound In this sub-method,
the acceptable bound for each feature in each frame
is the interval [(mean of the re f erence signals) ± n ×
(standard deviation of the re f erence signals)]. If the
studied participant’s performance lies in the mentioned
bound, the equivalent pixel value for his or her action
in each frame and feature is set to 255 (i.e., the per-
formance of the child in that feature and frame is
assumed to be perfect). If the studied signal lies out
of the interval [(mean of the re f erence signals) ± m ×
(standard deviation of the re f erence signals)] (m >

n), his or her related pixel value is set to 0 which means
that the performance of the studied subject in that feature
and frame is completely wrong with respect to the original
task. We have considered a linear formulation for the per-
formance changes between the above mentioned intervals.
Again, assuming that the reference signals are distributed
normally, in this article n and m are assumed to be 2 and 3,
respectively (Fig. 3).

III, SI-CC) Signals’ cross-correlations One of the auto-
mated assessment algorithms used in this study is calculating
the correlation between the reference signal and the test sig-
nal. In this method, a moving window of length w (e.g., 1/10
of the total frames of the signal), simultaneously goes through
the two mentioned signals and the time dependent values of
their correlation for each feature and frame are calculated
using the Pearson correlation formulation of the pairs ofw×1

vectors. The correlation values are between − 1 and 1 which
are linearly mapped to the interval [0-255] in order to make
the static images.

After producing the corresponding image by each of the
mentioned image-state method, we have a matrix, i.e. image
pixels, with a value between 0 and 255 (or better said, 0–1).
One way to extract a score as an automated score from each
image is to calculate the Root Sum Square (RSS) of the pixel
values and dividing the result into the number of the pixels
to produce a number between 0 and 1. However, considering
that each joint’s movement can have a different importance
in every action, we assigned a weighted or correction factor
between 0–1 for each feature’s elements of the actions by cal-
culating the Pearson correlation between that feature’s pixel
values and the human scores for the TD and Parents’ groups,

i.e., using weighted mean strategy. Finally, the automated
score related to that algorithm is extracted by calculating the
root sum square of the corrected pixel values. We also cal-
culated the mean values of all pixels as a simpler method of
scoring; however, using RSS led to a slight better result in
automated scoring.

Therefore, in the automated scoring process of this paper,
the data are separated in three groups: first, the performances
of theTDparticipantswith a score of 4 out of 4 are considered
as the reference signals; second, the other TD group’s data
as well as the Parent’s group data is used for calculating the
weighted factor regarding each feature’s importance during
the actions; and third, the ASD group’s data is used as the
test set. The results of using the abovementionedmethods for
evaluating the robotic system’s ability to assess the quality
of children’s actions are presented in the Results section.

2.6.4 Hidden Markov Models (HMM)

While using HMM, considering the independence assump-
tions of the body parts, the automated assessment could
be studied in different situations such as (1) fully indepen-
dent assumptions for all angles, velocities, or acceleration:
extracting 19, 38, or 57 one-variable parallel independent
Hidden Markov Models for each action, (2) considering all
features at once to extract one HMM model for each task,
and (3) different combination of body parts, e.g. assum-
ing the movement of left side and right side of the body
independently, assuming each foot and arm’s movements
independent, etc. Due to the small amount of the avail-
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a b 

c  d 

Fig. 3 a, b The mean (blue dash line), acceptable bound (the area
between the black lines) and the performance of two participants with
ASD (red solid line) in feature #6 (Left Shoulder Roll) versus the nor-
malized or aligned time in movement #1. The participants’ IDs are
ASD-12 and ASD-3 in a and b, respectively. The human coders scored
these ASD participants 4 and 1, respectively, in movement #1. As it can
be seen, the red lines show that the left shoulder angle for the ASD-12
lies in the acceptable bound during the action while highly follows the
pattern of the reference signals’ mean extracted from the TD subjects;
but for the ASD-3, the performance lies out of the acceptable bound in
a noticeable time duration especially in the last frames of the actions
which indicates that this participant did not perform the studied action,
well; c, d The equivalent images produced by the Acceptable Bound
sub-method for the participants with ASD in 2-a and 2-b, respectively.

In these images, only the 19 position features, i.e. Features 1–19, are
considered. The value of each feature in each frame is coded as the
brightness of the image pixel ranging from 0 to 255. Higher pixel inten-
sities or values in images show the higher performance in each feature
and frame. Regarding these images and the used color bars, deviating
from the yellow color shows that the performance of the subject is tak-
ing distance from the perfect criteria of this sub-method which means
that the features are getting out of the acceptable bound. Related to this
sub-method’s pixel evaluation, readers can visually observe the differ-
ence between the overall performance of the selected participants and
the reference signal in each frame and feature of movement #1. A look
at 2-c and 2-d shows us that in the viewpoint of the Acceptable Bound
assessment method, ASD-12 gets higher score than ASD-3 in this task
which is in line with the assessments of the human coders

able data in our experiments and the gross imitation tasks’
designwhich includes feet, arms, head, and torsomovements,
instead of assessing an action all at once or choosing the
fully independent assumption, we have divided each task into
six sub-actions by considering independence assumptions for
the movements of the participants’ left arm, right arm, left
foot, right foot, head, and torso; therefore, six independent
Hidden Markov Models have been trained regarding each
imitation task based on the TD participants with a full score

[32, 33]. Then, similar to the State-Image part, the rest of the
TD data as well as the Parent group’s data is used to calculate
the weighted factor for each sub task. The features for each
Hidden Markov Models are defined in Table 3. The Left-to-
Right (LTR) method for initializing the models’ parameters
was used in training the sets of Hidden Markov Models [32,
33]. Selecting the HMM state numbers was done using the
Bayesian Information Criterion (BIC) [32–34].
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Table 3 The features for the
Hidden Markov Models in this
study

No. Body parts Involved features in each extracted HMM model

Position features (X) Velocity features (V) Acceleration features (A)

1 Right Arm F1, F2, F3, F4 F20, F21, F22, F23 F39, F40, F41, F42

2 Left Arm F5, F6, F7, F8 F24, F25, F26, F27 F43, F44, F45, F46

3 Right Foot F9, F10, F11 F28, F29, F30 F47, F48, F49

4 Left Foot F1, F13, F14 F31, F32, F33 F50, F51, F52

5 Torso F15, F16, F17 F34, F35, F36 F53, F54, F55

6 Head F18, F19 F37, F38 F56, F57

Table 4 The summary of automated assessment algorithms used in this
study with short descriptions

Method Sub-method Used features

State-Image (SI) Acceptable bound X

X and V

X, V, and A

Mahalanobis distance X

Cross-correlation of signals X

X and V

X, V, and A

HMM LTR initiation and BIC X

X and V

X, V, and A

The log likelihood or probability of each sub-action’s test
signal using the trained models, i.e. HMM’s output, could
be used as the criteria for the robot’s automated assessment
of gross imitation movements. We used the weighted mean
of six HMM’s outputs considering the correction factors as
the automated score of this algorithm. To this end, the TD
and parents groups was selected and used as the training
set for each action and the equivalent average of manual
ratings by the video coders was used as the labels. There-
fore, appropriate Hidden Markov Models were trained and
the features’ importance factors were calculated based on the
training set. Applying the trained model on the data of the
ASD groups as the test set, the six static outputs as well as
their weighted means were calculated and considered as the
score by machine. The Pearson correlation of the test set’s
outputs with the human scores of ASD group are presented
in the Results section of the article.

The summary of automated assessment algorithms used
in this study are presented in Table 4.

3 Results and Discussion

In data collection, a 15-min introduction session was held for
each participant. In this session, the robot introduced itself

Table 5 ANOVA analysis of the TD andASD groups in the gross imita-
tion tasks in child-robot mode considering the children’s diagnosis and
action number

Factor DOF F value P value

Covariate: age 1 207.59 0.000

Independent factor 1: diagnosis 1 322.09 0.000

Independent factor 2: action number 9 10.39 0.000

Interaction of diagnosis and action
number

9 2.05 0.032

and tried to communicatewith the child via singing songs and
dancing. After the introduction session, the imitation games
were run for the cooperative children. Figure 4a–f show some
snapshots of the imitation games in different modes. Among
the TD andASD groups, 19 and 14 participants, respectively,
showed a tendency to imitate the robot’s tasks. Hence, to
answer the first sub research question, in these experimental
conditions, 95% of the TD participants and 70% of the ASD
group members showed an interest in performing the tasks
of the Nima robot in their first child-robot interaction, which
gave us a preliminary estimate of the robot’s acceptance for
TD children and children with ASD. Similar to the observa-
tions in [13], it is interesting to note that all the uncooperative
children were less than 5 years old.

3.1 Manual Assessment of the Imitation
Performance

The Pearson’s correlation coefficient (r) of our two coders’
scores were 0.847 (p value � 0.000). This indicates a strong
positive correlation between our two judges’ scores.We have
considered themean of the coders’ scores as the participants’
performance in each action and mode.

Applying a two-way ANOVA test on the manual scores
of the children considering “age” as the covariate and the
two independent factors: Diagnosis (including 2 levels: TD
or ASD) and Action Numbers (including 10 levels: 1–10)
led to the results found in Table 5. In Fig. 5, the mean of
the manual scores for both groups of the participants in each
imitation task are presented.
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Fig. 4 Snapshots of the children’s performance in differentmodes of the
imitation games: a robot-child mode in task #5, b teacher-child mode in
task #9, c teacher-child mode in task #1, d robot-child mode in task #7;
in this case, the subject with ASD was 3 years old and had difficulty in
instruction-perception. His parents highly encouraged him during the
games in order to involve their child in the games; however, we asked
them not to do the imitation tasks alongside the robot and teacher in the

robot-child and teacher-child modes to avoid any possible cofounding
factor in our study regarding the person that is imitated, e robot-child-
parent mode in task #3, and f teacher-child mode in task #7. It should
be noted that during the tasks, a human was always standing near the
robot for taking care of Nima if any possible falls happen or for the
cases that the participants tend to touch the robot; however, this person
was not involved in the imitation tasks at all.
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Fig. 5 Interaction plot for the imitation scores of the ASD and TD
groups considering the children’s diagnosis and action number

To have a closer look at the performance of the sub-
jects in each mode, we performed another two-way ANOVA
analysis on the manual imitation scores considering “age”
as the covariate and two independent factors: “Diagnosis +
Game Mode” including 6 different levels and Action Num-
ber including 10 levels. The results are presented in Table 6;
Fig. 6.

According to Table 6, the effect of the independent fac-
tors “Diagnosis + Game mode” and “Action Number” on
the gross imitation scores of the participants are signifi-
cantly different, separately (p values<0.05). Moreover, in
our research, no interaction was observed between the fac-
tors “Diagnosis + Game mode” and “Action Number” (p
value � 0.945>0.05). As expected, we observed that the
performance of the TD group in imitation movements was
significantly better than the ASD, which confirms the deficit
of children with ASD in imitation tasks in comparison with
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Table 6 ANOVA analysis of the TD and ASD groups in gross imitation
tasks in the robot-child mode considering the children’s diagnosis and
game modes as the first independent factor and action number as the
second factor

Factor DOF F value P value

Covariate: age 1 211.07 0.000

Independent factor 1: diagnosis 1 70.36 0.000

Independent factor 2: action number 9 10.39 0.000

Interaction of diagnosis and action
number

9 0.68 0.945
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Fig. 6 Interaction plot for the imitation scores of ASD and TD groups
considering the children’s diagnosis and game modes as the first inde-
pendent factor and action number as the second factor

their TD peers (Table 5; Figs. 5, 6). Interestingly, having ana-
lyzed TD and ASD groups independently, the performance
of both TD and ASD groups in teacher-child mode (mode
B) was significantly better than the robot-assisted modes,
i.e. modes A and C, in our experimental setup with a 0.000
and 0.0001 p values, respectively. Therefore, the hypothesis
that “children performing gross imitations tasks better in the
robot-child mode than in the human-child mode especially
for childrenwith autism” is not confirmed in this research.We
had observed a similar result in our previous study in facial
imitation tasks for children with ASD [13]. Costa et al. [14]
also reported that, on average, their participants more often
imitated the human-mediator than their robot; however, their
observations indicated that there was no statistically signifi-
cant difference between the two performances (p � 0.180).
Unlike the observation in this study, the authors in [35, 36]
claimed that their participantswith autismhad a lower perfor-
mance in the facial expressions imitation tasks in the human
mediator-child mode than the robot–child mode. As can be
seen, different studies reported various findings regarding the
mentioned hypothesis. We believe that the main reasons for
the significant difference in the subjects’ performances in the
robot-child and human-child modes of the gross imitations
in this study could be as follows: first, the previous Applied

Behavioral Analysis (ABA) treatment program received by
the ASD groups in this study in autism clinics could posi-
tively affect their performance in the imitation tasks in the
human-child mode. It should be noted that the participants
have been somehow taught how to communicate and work
with humanmediators, especially in the similar environments
in the clinics, in performing some of the imitation tasks such
as whole bodymovements, facial expressions, and children’s
activities with objects. Second, the robot’s different degrees
of freedomand range ofmotions in comparison to the human;
third, the robot’s small size and probable low visibility of the
movements’ details; and fourth, the robot’s lower verbal com-
munication with the participants in comparison to the human
teacher during the tasks, which might affect the subjects’
obedience especially for the TD participants.

Oneof the qualitative observations in the current studywas
the performance of a child with low-functioning autismwho,
because of fatigue and low instruction perception, refused to
complete the last three tasks of mode C. Nima’s ability to
give some short verbal communication with the participants
was one of the advantages of this study in comparison to
[13], and led to more effective communication between the
children and the robot. Some of the participants asked the
teacher if they could touch the robot at the end of the game
sessions. However, regarding the robot’s charm, we observed
that some of the participants with ASD either attacked the
robot or moved out of the Kinect’s field of view, which led
to data recording corruption. It should be noted that such
behaviors were not observed from the TD participants.

3.2 Automated Assessment of the Imitation Tasks

We have used the introduced State-Image and HMM based
algorithms as the automated algorithms candidates in this
paper. As previously mentioned, in each algorithm, the ASD
group’s data was considered as the test set while the other
data (i.e., the TD and the Parents’ groups) was chosen as the
training or ground truth set for calculating the importance
factors of each feature in each task. We used each algorithm
three times (except for the Mahalonobis Distance): (1) only
considering the position angles as the features, i.e. 19 features
F1–F19, (2) considering the position and velocity features,
i.e. 38 features including F1–F38, and (3) considering all
the position, velocity and acceleration features, i.e. 57 fea-
tures including F1–F57 as the feature space. Table 7 presents
the Pearson correlation coefficient between the machine and
human scores of the ASD group’s evaluation as the test set
for each proposed automated algorithms. As it can be seen
in Table 7, the best performance in this study is observed by
the State-Image Acceptable Bound method considering all
57 features. Therefore, we prefer to introduce this method
for the automatic assessing system for our robotic platform
in this manuscript. The results indicate that the acceleration
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of the joints which is not easily calculated, understood, or
sensed by the human evaluators could be an important fac-
tor in assessing the quality of actions, and this is where the
machine could be great help to the human therapists. Table 8
shows the details of the best algorithms in each movement
as well as the Acceptable Bound method with the position,
velocity, and acceleration features. In addition, the mean and
standard deviation of errors for each algorithm in all of the
actions are also presented in Table 8. Here, we define an
error which is equal to the absolute of difference between
the human’s score and the automated score by the machine
(i.e. Error � |Human’s Score – Automated Score|). It should
be noted that to avoid needlessly prolonging the article, we
declined to provide the detailed results of all of the algo-
rithms.

3.3 Graphical Comparison of the Imitation
Performance Between ASD and TD Groups Based
on the x, y, and z Positions

In order to have a better sense of the subjects’ performances
in the games as well as doing the comparisons, the readers
may be interested to observe graphical pictures of the partic-
ipants’ body skeletons. Therefore, instead of the introduced
angles, we also take a look at the x, y, and z positions of the
body joints in this subsectionwhichwas used inMahalonobis
distance sub-method. To this end, in the figures based on the
spatial positions of the participants’ joints, the position of the
point between the two ankles of the user is set as the origin of
the coordinate system, i.e. (0, 0, 0). Therefore, the effect of
the initial distance between the users and the Kinect sensor
vanishes. Moreover, for height normalization, the height of
each user is set to 1 by dividing the x, y, and z coordination
values to the user’s real height. Here, it is assumed that the
“ratio of body lengths to the subject’s height” is the same for
all participants, which is also not a flawless but acceptable
assumption. Figure 7 shows the normalized spatial data of
the bodies for the ASD, TD, and Parent groups for action #1
simultaneously in four different frames and time instances
(after time normalization). In these figures, the blue, red,
and green ellipses represent the spatial wrist distributions
of the ASD, TD, and Parent groups, respectively. Regarding
Fig. 7, the impairment of the children with autism in doing
the imitation tasks is obvious compared to their TD peers and
the Parents (for example, see Fig. 7c), which is in line with
the results of the manual scoring by the evaluators. Similar
results have also been observed in the other actions. In Figs. 8
and 9, we have presented the data without aligning the sig-
nals, called the situation of real unchanged or unwarped time,
to present a better simultaneous sense of the performances’
accuracy and agility which is described in the next subsec-
tion. As an example, Fig. 8 also shows the y-position of the
left wrist versus time for each participant in action #1. The
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Table 8 The correlation coefficient and error’s mean and standard deviation of the proposed algorithms for the automated assessment of the ASD
Group’s imitation performance for the situations with the highest correlation coefficient

Action no. Sub-method Features Correlation
coefficient

p value for
correlation factor

Mean of error (out
of 4)

Std of error (out of
4)

1 Acceptable bound X 0.72 0.00 1.21 0.85

1 Acceptable bound X, V, and A 0.59 0.00 1.22 0.90

2 Cross-correlation of
signals

X, V, and A 0.44 0.04 1.18 0.71

2 Acceptable bound X, V, and A 0.35 0.11 1.19 0.80

3 Acceptable bound X, V, and A 0.59 0.00 1.02 0.64

4 Acceptable bound X, V, and A 0.63 0.00 0.94 0.71

5 Cross-correlation of
signals

X and V 0.15 0.53 1.55 0.95

5 Acceptable bound X, V, and A 0.11 0.64 1.03 0.72

6 Acceptable bound X 0.49 0.05 1.11 0.65

6 Acceptable bound X, V, and A 0.25 0.34 1.05 0.64

7 Acceptable bound X, V, and A 0.51 0.02 0.77 0.57

8 Acceptable bound X, V, and A 0.56 0.01 1.49 0.69

9 Mahalanobis
distance

X 0.50 0.07 1.27 0.87

9 Acceptable bound X, V, and A 0.36 0.21 0.75 0.54

10 HMM X, V, and A 0.30 0.18 1.09 1.11

10 Acceptable bound X, V, and A 0.24 0.29 1.41 1.00

solid lines show the mean values of the participants’ perfor-
mancewhile the blue regions represent of themean value plus
or minus one standard deviation (Std) of each group’s per-
formance. As we mentioned in the State-Image Acceptable
Bound sub section, we chose the TD subjects with full mark’s
Mean± 2× Std as the acceptable boundary for each move-
ment. It should be noted that assuming normal distributions
for a group of users’ performances in such actionswould lead
us to expect that about 68%of that group’s distributionwould
fall in the shaded area, which is Mean±1× Std. Equivalent
to Fig. 8d, the participant’s left shoulder pitch angle versus
time for action #1 is also presented in Fig. 9 in two situa-
tions: unchanged time and normalized time, which definitely
gives us a less visual sense of the quality of the action or the
subjects’ faults; however, valuable for the robotic system. To
avoid prolonging the text, the graphs for the rest features and
actions are not presented in the manuscript.

3.4 Agility

According to our observations in this study, children with
autism showed a deficit in the time duration of completing
each action in comparison to their TD peers. To have a crite-
rion for studying the agility, we have considered the signals
of the typically developing participants who received a full
score, i.e. 4 out of 4, in each action as the ground truth or
reference data for assessing the agility in that action. There-

fore, we can define an agility factor, which is the ratio of
the time duration of each participant to the mean time of the
reference data for each action. Figure 10 shows the box plot
of the agility factor for the subjects with autism and typically
developing children in different imitation tasks. Figure 10a
and b could show us the preliminary differences between the
ASDandTDgroups’ time duration of the actions. In Fig. 10a,
values less than 1 mean that the child with ASD “finished or
left” the action sooner than the reference time extracted from
the TD group with a full score for that action. It is clear that
in studying agility, there is no need to align the dimension
of the signals before the analysis; hence, the real captured
signals have been used for plotting Fig. 10. As it can be seen
in Fig. 10a, the median of the agility factor regarding the
participants with ASD’s performance is less than 1 for all of
the actions in this study. A detail observation would lead us
to find that in five tasks, including actions #2, #5, #6, #7, and
#9, the agility factor’s median is less than 0.9. This means
that the subjects with ASD in this study finished (rarer) or
incompletely left (usually) the imitation tasks sooner than
their TD peers. This observation brought up some interest-
ing unanswered questions in the area of autistic children’
imitations performance that should be studied deeper: “Do
childrenwith autism receive the inputs in the sameway as the
TD subjects but are unable process or perform it as well? Or
is their poorer performance in gross imitation tasks because
of their brains’ inability to receive the input signals appro-
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Fig. 7 The graph of wrists’ spatial distributions for ASD (blue ellipses), TD (red ellipses), and Parent groups (green ellipses) in action #1 after time
normalization at four instants: a frame 5, b frame 25, c frame 40, and d frame 50

priately from the beginning?”. Considering that the agility
factor has been calculated based on the mean time of the TD
subjects with the full grade in different imitation actions, the
distributions of the equivalent boxes for all the TD partici-
pants in comparison to the ASD group have compact ranges
and the median are much more closer to 1.

Children with ASD may have other disabilities or deficits
alongside their autism which may have possible effects on
their agility and imitation performances. For example, a
review on the subjects’ clinical records showed that two of
the ASD participants in this research hadMental Retardation
and ADHD, respectively, alongside their autism. However,
as a limitation, we did not consider this issue in our study.

3.5 Results Summary

As a summary of Sects. 3.1–3.4, the important points of the
different groups’ performances are as follows: (1) Confirma-
tion of the first hypothesis by seeing a significant difference in

theASDgroup’s performance in comparisonwith theTDand
Parent groups both in manual and automatic scoring, which
shows the acceptable positive correlation between the man-
ual and automated scores as well as the appropriate features’
selection as the main contribution in automated assessment
section. The mentioned differences are somewhat visible in
Figs. 3, 7, 8, and 9. (2) No significant difference between
the TD and Parent groups’ imitation performances, and (3)
No significant difference between the parents of the ASD
group and parents of the TD group in the games. It should be
noted that the second and third findings were not discussed
in details in the text in order to avoid distracting the readers
from the main contributions of the paper.

Although the current results could be improved signifi-
cantly by improving the number of data set’s signals aswell as
the algorithms such as using Deep Neural Networks (DNN)
or Recurrent Neural Networks (RNN), the required time and
resources for performing such an automated assessment are
quite affordable. Using machines in assessment of the qual-
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a b 

c d 

e f 

Fig. 8 Themean (solid line) and the standard deviation around themean
values (dashed line) of the participants’ wrist y-position versus time in
action #1: a ASD group, b TD group, c Parent group, d comparison

of the three groups, e parents of children with autism, and f parents of
typically developing children (data captured at 30 frames per second)
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a  b 

Fig. 9 Themean (solid line) and the standard deviation around themean
values (dashed line) of the participants’ left shoulder pitch angle (ASD,
TD, and Parents groups) versus time in action #1 (data captured at 30

frames per second), a the results before normalizing the time and b the
results after normalizing the time

ity of actions can definitely be useful as they can analyze
some data characteristics such as velocity and acceleration,
parameters that are not easily measurable by human ther-
apists. Being able to easily conduct the situations at home
and send the data to the psychologists, the proposed method
can also decentralize the children’s performance in stress-
ful environments. In this study, we proposed an automated
assessment protocol which considers participants’ range,
speed, and accuracy of the motions. The proposed system
is able to continuously assess the quality of actions instead
of being limited to reporting the results descriptively and/or
qualitatively.Moreover, the proposedmeasure enables reduc-
tion in potential evaluator biases and comparison between
similar studies.

A clear message in using social robots in autism area is
that most studies have tried to conduct some form of imita-
tion therapy [37]. Statements such as spontaneous imitation
of children with autism during HRI [1] have probably moti-
vated the researchers to study and report whether or not
their participants with ASD perform better in robot-assisted
mode than human-mediatormodes during the imitation tasks.
As a summary, we have found a variety of works regard-
ing this issue such as no significant difference between the
two modes [14], better performance of children with ASD in
robot-assisted mode in imitating facial expressions [38], and
better performance in human mediator-assisted mode [13].
There are also some studies that report the advantages of both
modes such as [35]. In [35], the authors engaged four children
with ASD and divided them into two groups in which one of
them interact with a robot and the other with a teacher. They
observed higher performance in imitation of body move-
ments of familiar actions for the teacher-assisted group and
better performance of imitation in smile facial expressions

for the robot-assisted group. All in all, it should be noted
that in ours as well as the mentioned studies, the sample
size is a serious limitation of these studies and the non-
homogenous group of participants regarding autism severity,
age, and gender. This limitation makes it difficult to general-
ize the findings and observations as well as make any strong
claims for confirming hypothesis-II.

4 Application of the Study: Proposing
an Architecture of Human–Robot
Reciprocal Interaction Platform

Using the results from this study, we present a human–robot
reciprocal interaction platform for gross imitation with an
evaluation system as a treatment application of a robotic sys-
tem with the capability of automated imitation assessment
in the autism area (Fig. 11). It should be noted that recip-
rocal imitation programs, a well-known treatment protocol
worldwide, have been used to promote social responsive-
ness, shared attention, etc. in individuals with ASD [13, 39].
Therefore, knowing that improvement in gross imitation and
motor skills of children with autism can positively affect
their social and cognitive skills in real life and have possible
cognitive rehabilitation purposes [1, 2, 6, 13, 39], reciprocal
interaction with a social robot may be an appropriate treat-
ment application of these researches. To design a reciprocal
gross imitation training human–robot Interaction (HRI) for
children with ASD, we have considered two different modes:
the Non-Structured and Structured interaction modes. While
some robotic-based cognitive architectures for autism treat-
ment have been proposed in the literature [16, 26], we did
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a 

b

Fig. 10 The box plot for the agility factor of a children with autism’s
performance, and b all TD subjects’ performance; in comparison to the
TD peers with the full grade in different imitation actions

not see a systematic way to assess the quality of imitation
actions in dynamic movements.

Imitation of individual with autism’s behaviors is an effec-
tive way to trigger their attention toward human-mediators
[1, 2, 40, 41]. As mentioned in autism literature, conducting
imitation and turn-taking games and tasks could be an appro-
priate way to promote social interactions, creativity, sense of
self, leadership, etc. in individuals with ASD [1, 6, 38, 41].
Therefore, in the Non-Structured interaction mode our aim
is to empower the proposed platform to have the robot per-
form real-time gross imitation of the subjects, which is a
required capability for a reciprocal HRI platform to be effi-
cient for conducting reciprocal imitation programs. To this
end, the kinematics data of the participants’ skeletons is cap-
tured and used to reproduce their movements in the robot’s

upper body using appropriate forward and inverse kinematics
formulations. In this mode, the robot imitates and reacts to
arbitrary actions of the subjects including their arms and head
movements. SuchNon-Structured interactionmodes have the
potential to estimate the acceptability rate of social robots for
children as well. The details of how to empower the robot to
imitate the upper bodymovements of the users is presented in
the Appendix. It should be noted that in the proposed archi-
tecture, Kinect can be replaced with any RGB-D sensor or
camera system that provides human skeleton tracking.

On the other hand, in the Structured interaction mode,
the automated assessment system based on the State-Image
or HMM algorithms introduced and discussed in the pre-
vious subsections of the article has been embedded in the
proposed HRI architecture, this enables us to assess the sub-
jects’ gross imitation performance in imitating the robot’s
exercises during the child-robot interaction. This mode is the
other requirement for reciprocal platforms to be used in imi-
tation training programs’ content.

What we have presented in this paper, including the
participants’ recruitment, conducting the imitation tasks,
introducing the automated evaluation algorithm, doing the
manual and automated assessments, and finally, the com-
parison of the results, was an initial attempt to observe and
study the performance of the Structured interaction mode of
the proposed architecture, which was shown to provide quite
acceptable outputs.

Alternatively, manual assessment of gross imitations by
specialists is the most reliable and accurate way to score
the performance of children with autism; however, it is
time-consuming and a very hard task. Therefore, due to the
observed performance of our proposed algorithm so far, we
can conclude that HRI platforms with an automated assess-
ment capability and real-time evaluation system could handle
the process of imitation assessment with admissible accuracy
and have the potential to be an efficient assistant to therapists
in treatment centers.

5 Limitations and FutureWork

Enriching the datasets by increasing the number of partic-
ipants and considering more effective parameters, such as
the homogeneity in age, gender, and autism severity, would
definitely lead to more accurate mathematical models of the
children’s behavior, and therefore a more efficient HRI plat-
form. Currently, the mentioned non-homogeneities in this
pilot study make it somewhat impossible to make general-
ized claims regarding the mathematical modeling accuracy.
Having a more considerable number of signals in our dataset
could definitely help the researchers to go through the power-
ful algorithms for dynamic assessment such as Deep Neural
Networks (DNN) orRecurrentNeuralNetworks (RNN). Sig-
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Fig. 11 The proposed architecture of a human–robot reciprocal interaction platform for gross imitations with the evaluation system

nals’ alignment can also performed by using the Dynamic
Time Warping (DTW) algorithm instead of what we did in
this study.

One of our limitations was accessing an adequate number
of cooperative female participants with autismwhich is fairly
common due to the small population rate of girls to boys with
autism spectrum disorders. Also, more studies could be per-
formed with diverse robots to investigate the possible effects
of their appearance, gender, interaction capabilities, etc. on
the acceptability rate and children’s performance in imitation
tasks. Moreover, unfortunately, we did not conduct a modeD
in this study that contains imitation of teacher by both child
and parent simultaneously alongside the mode C. A mode
D experiment could help us to have a more comprehensive
understanding and comparison between the performances of
the children within and between the robot-child and teacher-

child modes. In addition, in some cases like Fig. 4e in the
robot-child-parent mode, the parents were sometimes look-
ing at the participant, probably trying to get their child to
imitate or encourage the subject to get involve in the games.
As another limitation, it was sometimes hard in this case to
identify who (robot or the parent) the participant is really
imitating; therefore, this limitation could be considered as a
possible interfering factor that should be carefully addressed
in next studies.

Based on the observed preliminary acceptance rate of the
human–robot interaction alongside the qualitative findings,
our next step is to develop and run a set of imitation-based
intervention protocols for children with autism. Alterna-
tively, we recommend other researchers to conduct the
proposed reciprocal HRI platform with a larger number of
participants and compare the results to regular reciprocal
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Fig. 12 The Nima robot’s
kinematic chains and upper
body joints

imitation training programs to explore the advantages and
disadvantages of the developed architecture. Moreover, to
avoid entering extra variables such as possible effect on chil-
dren’s cooperation to the study with the aim of comprising
the typical treatment protocols in autism centers, there is no
need to have parents in the game roomduring the intervention
sessions.

In the Non-Structured mode of the current version of the
proposed architecture, the robot can only imitate the upper
body movements including the head and arm movements of
the users. Considering the balance conditions for the robots
alongside the use of forward and inverse kinematics calcula-
tions, our future aim is to empower robots to imitate the feet
and waist’s bending and rotation of the participants as well.

6 Conclusion

As a preliminary estimation of the robot’s acceptability, we
observed that 70% of the participants with ASD showed a
tendency to imitate Nima’s actions. In this study, one of the
common hypotheses spread in the literature: “participants
with ASD usually show better performance in robotic than
non-robotic gross imitation tasks” was investigated for both
ASD and TD groups by comparing the scores of the chil-
dren’s performance in mode A and mode B; it is indicated
that the mentioned hypothesis is not confirmed in our exper-
imental conditions. In addition, the presented State-Image
andHMM-based automated imitation assessment algorithms
were tested and we observed that the State-Image Accept-
able Bound method’s outputs were fairly comparable to
the related works out of the autism area in assessing the
quality of dynamic actions with the Pearson correlation of
~45% regarding our captured data. Moreover, we tried to
follow a scientific approach to propose an HRI platform to
be used in reciprocal imitation training programs with the
potential for use in social and cognitive rehabilitation for
children with ASD. According to the observed acceptable
accuracy of the proposed automated assessment algorithm,
we concluded that imitation assessment could be handled by
human–robot interaction platforms. In a follow up of our past

Table 9 Denavit–Hartenberg parameters for robot’s right and left arms
and head

αi−1(rad)1 ai−1 θi di

1 0 0 θ1 0

2 π
2 0 −θ2 0

3 π
2 0 θ4 0

4 αRS−RE LRight Arm θ5 0

5 π
2 0 θ7 0

6 αLS−LE LLe f t Arm θ8 0

study [13], the efforts made in this research put us one step
further in reaching the ultimate goal of empowering recipro-
cal human–robot interaction platforms to imitate whole body
movements, facial expressions, voice, and even children’s
activities with objects and toys.

7 Appendix

Figure 12 shows Nima’s base frame, zero positions of the
upper body joints of the robot, and the attached frames.
After recording the user’s skeletal data with the Microsoft
Kinect Sensor, using thepresentedDenavit–Hartenberg (DH)
parameters of the robot in Table 9 would lead to the calcu-
lation of eight joints of Nima’s upper body including Head
Yaw, Head Pitch, and Shoulder Pitch, Shoulder Roll, and
Elbow Pitch of the arms. Therefore, the robot is empow-
ered to perform admissible real time position tracking of the
participants’ upper body joints. It should be noted that the
Microsoft Kinect Sensor sampling rate, i.e. ~ 30 frames per
second, is quiet adequate for admissible imitation.

where αLS−LE and αRS−RE are the angles between the
z direction of Left and Right Shoulder and Elbow, respec-
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Table 10 Inverse kinematics for the head, right hand and left Hand of
NAO

Head yaw θ1 � atan2(H_SCy, H_SCx )

Head pitch θ2 �
atan2(

√
H_SCx

2 + H_SCy
2, H_SCz)

Right shoulder pitch θ3 � atan2(−E_SRz, E_SRx )

Right shoulder roll θ4 � asin
(
E_SRy
LRArm

)

Right elbow pitch θ5 � acos

(
−→
R RArm .

−→
R RForehand∣∣∣−→R RArm

∣∣∣.
∣∣∣−→R RForehand

∣∣∣

)

Left shoulder pitch θ6 � atan2(−E_SLz, E_SLx )

Left shoulder roll θ7 � asin
(
E_SLy
LLArm

)

Left elbow pitch θ8 � −acos

(
−→
R LArm .

−→
R LForehand∣∣∣−→R LArm

∣∣∣.
∣∣∣−→R LForehand

∣∣∣

)

tively. LRight Arm and LLef t Arm are the length of the arms.
Equation 3 shows the homogenous transformation matrix.

i
i−1T �

⎡
⎢⎢⎣

cos(θi ) −sin(θi ) 0 ai−1

sin(θi ).cos(αi−1) cos(θi ).cos(αi−1) −sin(αi−1) −sin(αi−1).di
sin(θi ).sin(αi−1) cos(θi ).sin(αi−1) cos(αi−1) cos(αi−1).d

0 0 0 1

⎤
⎥⎥⎦

(3)

Combining the DH transformation matrices of the men-
tioned joints (Eqs. 4–10) makes it possible to calculate
Nima’s head, left wrist, and right wrist positions.

Shoulder Center
Head T � Shoulder Center

1 T .12T (4)

Shoulder Right
Elbow Right T � Roty(θ3)

Shoulder Right
3 T (5)

Shoulder Right
Wrist Right T � Shoulder Right

Elbow Right T .34T (6)

Shoulder Le f t
Elbow Le f t T � Roty(θ6)

Shoulder Le f t
5 T (7)

Shoulder Le f t
Wrist Le f t T � Shoulder Le f t

Elbow Le f t T .56T (8)

Shoulder Right
Wrist Right P � Shoulder Right

Wrist Right T .
[
LRight Forehead , 0, 0, 1

]T
(9)

Shoulder Le f t
Wrist Le f t P � Shoulder Le f t

Wrist Le f t T .
[
LLef t Forehead , 0, 0, 1

]T
(10)

Table 10 also shows the inverse kinematics formulations
for the mentioned joints of the robot. We experimentally
found that a fraction of the maximum speed of Nima’s actu-
ators could be set to 0.8 in order to avoid facing high jerk and
high imitation time delays.
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